1. Tell whether the ordered pair is a solution of

$$
\left\{\begin{array}{l}
y<2 x+5 \\
4 y>-4 x-8
\end{array} ;(3,2) .\right.
$$

linear inequalities
The ordered pair is a solution of the system of equations.
2.

Tell whether the ordered pair is a solution of $\left\{\begin{array}{l}y<2 x+5 \\ 4 y>-4 x-8\end{array} ;(0,6)\right.$.
$(0,6)$ does not satisfy $y<2 x+5$.
$(0,6) \quad$ satisfies $\quad 4 y>-4 x-8$.
Therefore, the ordered pair is not a solution of the system of equations.
3. Part 1 out of 2

Select the graph of the system of linear inequalities.

$$
\left\{\begin{array}{lll}
y \leq-2 x-3 & m=-\frac{2}{1} \text { Rue } & b=(0,-3) \\
y \leq-2 x+1 & m=-\frac{2}{1} & b=(0,1)
\end{array}\right.
$$

- Ron to the Right
- Tor number
- go down
+ GO OP

Part 2

Complete the description of the ordered pairs which are solutions to the system.
The solutions are the same as the solutions to $y \leq-2 x-3$ v.
4. Part 1 out of 2

Select the graph of the system of linear inequalities.
Remember the Concept

Part 2

Complete the description of the ordered pairs which are solutions to the system.
This system has
no
v solutions.

5. Part 1 out of 2

Select the graph of the system of linear inequalities.

$$
\begin{cases}x>1 & \text { First: } x>1 \text {. The equation of the boundary line is } x=1 \text {. The } \\ y \leq-\frac{1}{2} x-1 & \text { thequality symbol is is so sondary a dashed line. Shade to solutions that right of greater than the inequality. } \\ & \text { Second. } m=-1 / 2 \text { and } b=(0,-1) .\end{cases}
$$

The inequality symbol is is so use a solid line. Shade below the boundary line for solutions that are less than the inequality.

Select the ordered pairs which are solutions to the system.

6. Part 1 out of 2

Select the graph of the system of linear inequalities.

$$
\left\{\begin{array}{lll}
y<-x+6 & m=-\frac{1}{1} & b=6 \\
y<\frac{1}{10} x+7 & m=\frac{1}{10} & b=7
\end{array}\right.
$$

Part 2 out of 2
Select the ordered pairs which are solutions to the system.

7.

$$
\left\{\begin{array}{l}
y \leq \frac{1}{2} x-2 \\
y \geq-2 x+9
\end{array}\right.
$$

$(6,8)$

Part 2 out of 2

Select the ordered pairs which are solutions to the system.
8.

1 Solve the inequality for $y(y=m x+b)$.
2 Graph the boundary line for the inequality. ($\rangle--=--, \leq, \geq \geq$).
3 Shade the region ($>, \geq$: Above, $<, \leq$: Below).
4 Repeat steps 1-3 for the second inequality.
5 Shade the region that overlap.

9.

1 Solve the inequality for $y(y=m x+b)$.
2 Graph the boundary line for the inequality. ($\rangle-----, \leq, \geq$).
3 Shade the region ($>, \geq$: Above, \langle, \leq : Below).
4 Repeat steps 1-3 for the second inequality.
5 Shade the region that overlap.

10. Select the graph of the system of linear inequalities.

$$
\left\{\begin{array}{lll}
y \geq \frac{9}{4} x-2 & m=\frac{9}{4} & b=-2 \\
y<\frac{9}{4} x-7 & m=\frac{9}{4} & b=-7
\end{array}\right.
$$

