14.2 Transversals and Parallel Lines - Class & Homework

Find the equation of the line.

The line is parallel to $y = \frac{4}{5}x + 3$ and passes through the point (-5, -1).

*In geometry, parallel lines are lines in a plane which do not meet; that is, always the same distance apart (called "equidistant"). They have the same slope but -intercepts.

The slope of the parallel line is $-\frac{4}{5}$. different y-intercepts.

Let
$$(x_1, y_1) = (-5, -1)$$
 and use point-slope form.

$$y - y_1 = m(x - x_1)$$
 Point-slope form

$$y - (-1) = -\frac{4}{5}(x - (-5))$$
 Substitute the values of m , x_1 , and y_1 .

$$y + 1 = -\frac{4}{5}(x + 5)$$
 Simplify.

$$y + 1 = -\frac{4}{5}x - 4$$
Distribute
$$y = -\frac{4}{5}x - 5$$
Solve for y.

The equation of the line is $y = -\frac{4}{5}x - 5$.

Find the equation of the line.

The line is perpendicular to $y = \frac{1}{5}x + 4$ and passes through the point (3, 7).

*In geometry, the perpendicular line are two lines which meet at a right angle (90 degrees). Perpendicular line have slopes that are <u>negative reciprocals</u> of each other.

The slope of the perpendicular line is -5.

Let $(x_1, y_1) = (3, 7)$ and use point-slope form.

$$y-y_1 = m(x-x_1)$$
 Point-slope form
 $y-7 = -5(x-3)$ Substitute the values of m, x_1 , and y_1 .
 $y-7 = -5x + 15$ Simplify.
 $y = -5x + 22$ Solve for y .

The equation of the line is y = -5x + 22.

In the figure below, m || n. Drag and drop each label into its corresponding box to show the appropriate angl

A. ∠1 and ∠4

Vertical Angles

B. ∠3 and ∠5

Same-Side Interior Angles

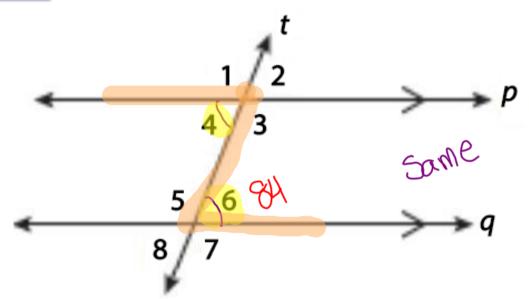
C. ∠3 and ∠6

Alternate Interior Angles

D. ∠3 and ∠7

Corresponding Angles

Recall that corresponding angles lie on the same side of the transversal and on the same sides of the intersected lines. So, choice D represents corresponding angles.

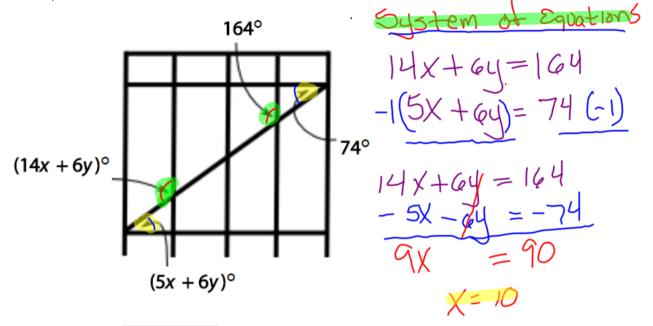

Recall that same-side interior angles lie on the same side of the transversal and between the intersected lines. So, choice B represents same-side interior angles. (Consecutive Interior Angles)

Recall that alternate interior angles are nonadjacent angles that lie on opposite sides of the transversal between the intersected lines. So, choice C represents alternate interior angles.

Recall that vertical angles are nonadjacent angles formed by a pair of intersected lines. So, choice A represents vertical angles.

4

Use the figure to find the specified angle measure. In the figure, $p \parallel q$.



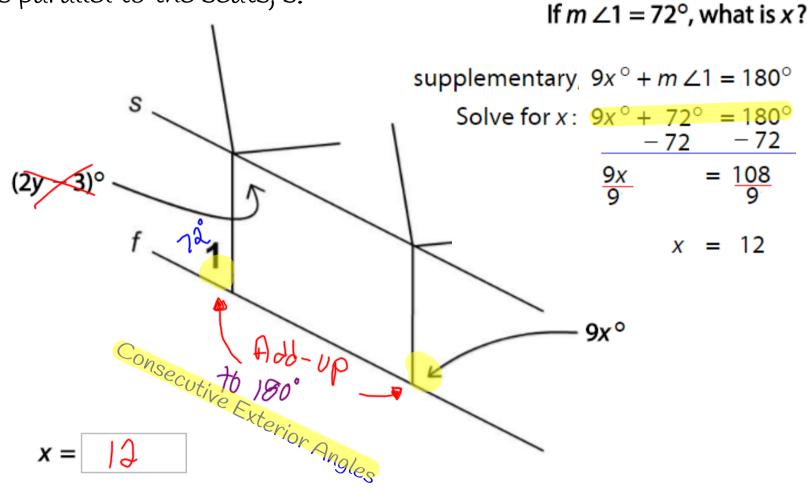
Suppose $m \angle 6 = 84^{\circ}$. Find $m \angle 4$.

$$m \angle 4 = 84$$
 °, by the Alternate Interior Angles Theorem \checkmark .

^{*}Recall the Alternate Interior Angles Theorem: If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are equal in measure.

In the diagram of a gate, the horizontal bars are parallel and the vertical bars are parallel. Find x and y. Complete the explanation indicating which postulates and/or theorems were used to find the values.

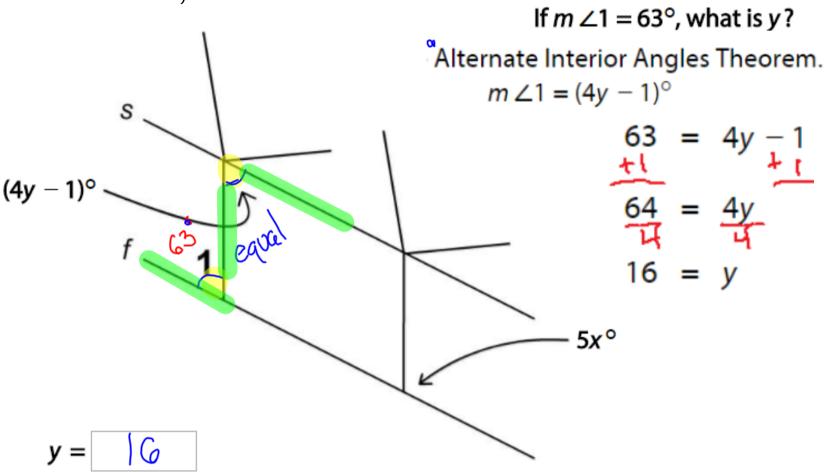
$$(14x + 6y)^\circ = 164$$
 ° by the Corresponding Angles Theorem ▼ and $(5x + 6y)^\circ = 74$ ° by the Alternate Interior Angles Theorem ▼.


Substitute 10 for x in one of the equations to find y.

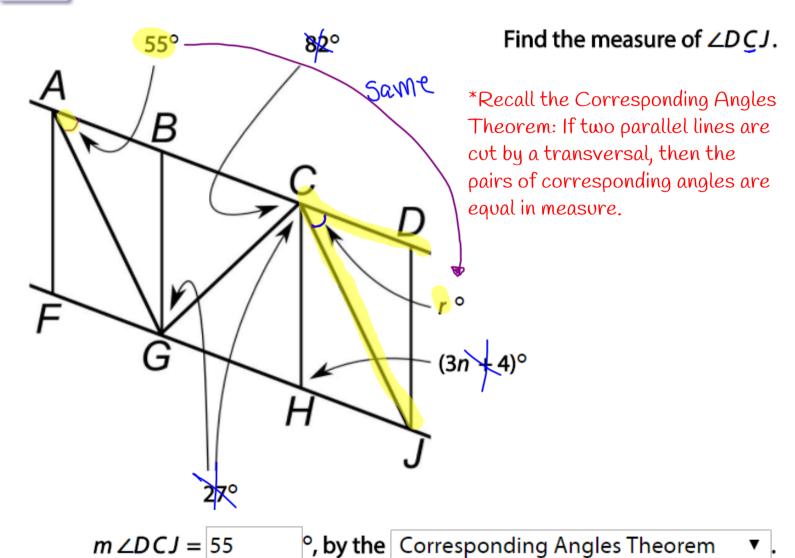
$$5x + 6y = 74$$

 $5(10) + 6y = 74$
 $6y = 24$

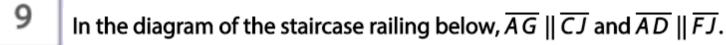
$$x = 10$$

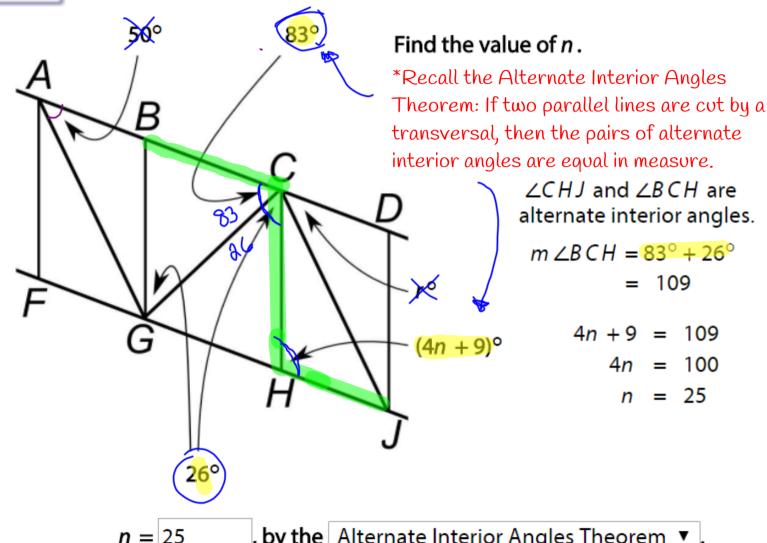

$$y = 4$$

In the diagram of movie theater seats, the incline of the floor, f, is parallel to the seats, s.


Examples

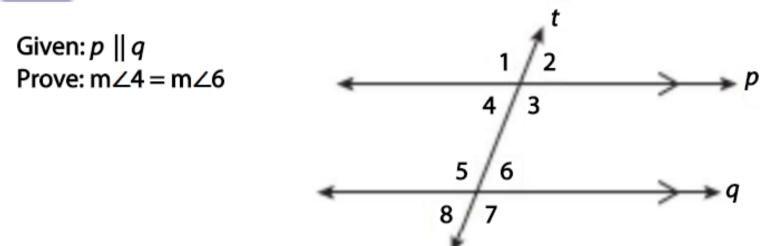
7 In the diagram of movie theater seats, the incline of the floor, f, is parallel to the seats, s.


8


In the diagram of the staircase railing below, $\overline{AG} \parallel \overline{CJ}$ and $\overline{AD} \parallel \overline{FJ}$.

9

Examples



, by the Alternate Interior Angles Theorem ▼ . n = 25

14.2

10

Complete a proof in paragraph form for the Alternate Interior Angles Theorem.

You are given that $p \mid q$, so using the Same-Side Interior Angles Postulate, you know that $\angle 4$ and $\angle 5$ are supplementary \blacksquare . When angles are supplementary, the sum of their measures is $\blacksquare 80$ °. You can write this as $m \angle 4 + m \angle 5 = 180^\circ$. When you look at the given diagram, you see that $\angle 6$ and $\angle 5$ form a line, and so they are \blacksquare linear pair \blacksquare , which makes them supplementary \blacksquare . You can write this as $m \angle 6 + m \angle 5 = 180^\circ$. Using the Substitution Property of Equality, you can substitute $\blacksquare 80^\circ$ \blacksquare in $m \angle 4 + m \angle 5 = 180^\circ$ with $m \angle 6 + m \angle 5$. This results in $m \angle 4 + m \angle 5 = m \angle 6 + m \angle 5$. Using the Subtraction Property of Equality, you can subtract $\boxed{m \angle 5}$ \blacksquare from both sides. So, $\boxed{m \angle 4 = m \angle 6}$ \blacksquare .