14.2 Transversals and Parallel Lines - Class \& Homework

1 Find the equation of the line.

The line is parallel to $y=-\frac{4}{5} x+3$ and passes through the point $\left(\begin{array}{c}x_{1}, \\ (-5,-1)\end{array}\right.$.
*In geometry, parallel lines are lines in a plane which do not meet; that is, always the same distance apart (called "equidistant"). They have the same slope but different y-interceots.

The slope of the parallel line is $-\frac{4}{5}$.

Paralled Lines

Let $\left(x_{1}, y_{1}\right)=(-5,-1)$ and use point-slope form.

$$
\begin{array}{rlrl}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-(-1) & =-\frac{4}{5}(x-(-5)) & & \text { Substitute the values of } m, x_{1}, \text { and } y_{1} . \\
y+1 & \left.=-\frac{4}{5}(x+5)\right) & & \text { Simplify. } \\
y+y & =-\frac{4}{5} x-4 & \text { Distribute } \\
\underbrace{-1}_{1-1} & =\underbrace{4}-\frac{4}{5} x-5 & \text { Solve for } y .
\end{array}
$$

The equation of the line is $y=-\frac{4}{5} x-5$.

The line is perpendicular to $y=\frac{1}{5} x+4$ and passes through the point $(3,7)$.
*In geometry, the perpendicular line are two lines which meet at a right angle (90 degrees). Perpendicular line have slopes that are negative reciprocals of each other.

The slope of the perpendicular line is -5 .

Let $\left(x_{1}, y_{1}\right)=(3,7)$ and use point-slope form.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-7 & \text { Point-slope form } \\
y-7 & =-5(x-3) \\
y-7 & =-5 x+15 \\
-2+7 & \text { Substitute the values of } m, x_{1}, \text { and } y_{1} . \\
y & =-5 x+22
\end{aligned}
$$

The equation of the line is $y=-5 x+22$.

3

In the figure below, $m \| n$. Drag and drop each label into its corresponding box to show the appropriate angl

Recall that corresponding angles lie on the same side of the transversal and on the same sides of the intersected lines. So, choice D represents corresponding angles.

Recall that same-side interior angles lie on the same side of the transversal and between the intersected lines. So, choice B represents same-side interior angles. (Consecutive Interior Angles)

Recall that alternate interior angles are nonadjacent angles that lie on opposite sides of the transversal between the intersected lines. So, choice C represents alternate interior angles.

Recall that vertical angles are nonadjacent angles formed by a pair of intersected lines.
So, choice A represents vertical angles.

4 Use the figure to find the specified angle measure. In the figure, $p \| q$.

Suppose $m \angle 6=84^{\circ}$. Find $m \angle 4$.
$m \angle 4=84 \quad \circ$, by the Alternate Interior Angles Theorem $\quad \mathbf{v}$.
*Recall the Alternate Interior Angles Theorem: If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are equal in measure.

5 In the diagram of a gate, the horizontal bars are parallel and the vertical bars are parallel. Find x and y. Complete the explanation indicating which postulates and/or theorems were used to find the values.

$14 x+64=164$

$x=10$

$$
\begin{aligned}
& (14 x+6 y)^{\circ}=164 \\
& (5 x+6 y)^{\circ}=74 \\
& \left({ }^{\circ} \text { by the Alternate Interior Angles Theorem } \quad\right. \text { v. }
\end{aligned}
$$

Substitute 10 for x in one of the equations to find y.

$$
\begin{aligned}
5 x+6 y & =74 \\
5(10)+6 y & =74 \\
6 y & =24 \\
y & =4
\end{aligned}
$$

In the diagram of movie theater seats, the incline of the floor, f, is parallel to the seats, s .

7 In the diagram of movie theater seats, the incline of the floor, f, is parallel to the seats, s.

If $m \angle 1=63^{\circ}$, what is y ?

In the diagram of the staircase railing below, $\overline{A G} \| \overline{C J}$ and $\overline{A D} \| \overline{F J}$.

9 In the diagram of the staircase railing below, $\overline{A G} \| \overline{C J}$ and $\overline{A D} \| \overline{F J}$.

Complete a proof in paragraph form for the Alternate Interior Angles Theorem.
Given: $p \| q$
Prove: $\mathrm{m} \angle 4=\mathrm{m} \angle 6$

You are given that $p \| q$, so using the Same-Side Interior Angles Postulate, you know that $\angle 4$ and $\angle 5$ are supplementary \quad. When angles are supplementary, the sum of their measures is 180 ${ }^{\circ}$. You can write this as $\mathrm{m} \angle 4+\mathrm{m} \angle 5=180^{\circ}$. When you look at the given diagram, you see that $\angle 6$ and $\angle 5$ form a line, and so they are a linear pair v, which makes them supplementary \mathbf{v}. You can write this as $m \angle 6+m \angle 5=180^{\circ}$. Using the Substitution Property of Equality, you can substitute 180° \checkmark in $\mathrm{m} \angle 4+\mathrm{m} \angle 5=180^{\circ}$ with $\mathrm{m} \angle 6+\mathrm{m} \angle 5$. This results in $\mathrm{m} \angle 4+\mathrm{m} \angle 5=\mathrm{m} \angle 6+\mathrm{m} \angle 5$. Using the Subtraction Property of Equality, you can subtract $m \angle 5$ v from both sides. So, $m \angle 4=m \angle 6$

