1. How can you write an algebraic expression for the radius of the circumcircle of ABC? Complete the explanation.

- Iote: The circumcircle is a triangle' rcumscribed circle, i.e., the unique rcle that passes through each of ti riangle's three vertices. The centel f the circumcircle is called the rcumcenter, and the circle's radius alled the circumradius.

$Z A, Z B$, or $Z C \quad$; the radius of the circumcircle is the distance from $Z \quad v$ to a vertex of the triangle.

2. $\overline{K Z}, \overline{L Z}$, and $\overline{M Z}$ are the perpendicular bisectors of GHJ. Use that information to find the length of each segment. Note that the figure is not drawn to scale.

Given: $Z G=13, H L=12, Z L=5$
Find: $H J$ and $Z J$
The line segment $\frac{\partial^{\prime 2 k}}{H J}$ has length 24.
The line segment $\overline{Z J}$ has length

2G

3
$\overline{K Z}, \overline{L Z}$, and $\overline{M Z}$ are the perpendicular bisectors of $\triangle G H J$. Use that information to find the length of each segment. Note that the figure is not drawn to scale.

Given: $Z M=26, Z H=25, G J=126$
Find: $G M$ and $Z G$
The line segment $\overline{G M}$ has length \square 63

The line segment $\overline{Z G}$ has length \square 25
4. Graph the triangle with the given vertices and find the circumcenter of the triangle.

$$
Q(-4,0), R(0,0), S(0,2)
$$

The circumcenter of $\triangle Q R S$ is $(-2,1)$.
5. Graph the triangle with the given vertices and find the circumcenter of the triangle.

use L and M

$$
\begin{array}{ll}
(1,5) & (4,1) \\
x, y_{2} & x_{1} y_{2}
\end{array}
$$

$$
\text { midpoint: }\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
\left(\frac{1+4}{2}, \frac{5+1}{2}\right)
$$

$$
\left(\frac{5}{2}, \frac{6}{2}\right)
$$

$$
(2,5,3)
$$

The circumcenter of $\Delta K L M$ is $(2.5,3)$.
6. $\overline{Z D}, \overline{Z E}$, and $\overline{Z F}$ are the perpendicular bisectors of $A B C$. Use that information to find the length of each segment. Note that the figure is not drawn to scale.

Given: $Z D=44, Z A=85, F C=79$ Find: $Z C$ and $A C$
The line segment $\overline{Z C}$ has length \square 85 $=A Z$

The line segment $\overline{A C}$ has length \square 158 .
2.FC
7. $\overline{Z D}, \overline{Z E}$, and $\overline{Z F}$ are the perpendicular bisectors of $A B C$. Use that information to find the length of each segment. Note that the figure is not drawn to scale.

Given: $Z F=38, Z A=83, A B=158$ Find: $A D$ and $Z B$
The line segment $\overline{A D}$ has length $79=\frac{A B}{2}$
The line segment $\overline{Z B}$ has length $83=Z A$
$8 . \overline{Z D}, \overline{Z E}$, and $\overline{Z F}$ are the perpendicular bisectors of $A B C$. Use that information to find the length of each segment. Note that the figure is not drawn to scale.

Given: $Z A=50, Z E=14$ Find: $B C$

(Hint: Use the Pythagorean Theorem.)

The line segment $\overline{B C}$ has length

By the Pythagorean Theorem,

$$
\begin{aligned}
E C^{2} & =Z C^{2}-Z E^{2} \\
& =(50)^{2}-(14)^{2} \\
& =2,304 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } E C=\sqrt{2,304}=48 \text {. } \\
& \text { So, } B C=2 \cdot 48=96 \text {. }
\end{aligned}
$$

9. Graph the triangle with the given vertices and find the circumcenter of the triangle.

$$
Q(3,6), R(7,6), S(3,-2)
$$

$$
\begin{gathered}
\text { mid point }\left(\frac{7+3}{2}, \frac{6-2}{2}\right) \\
\left(\frac{10}{2}, \frac{4}{2}\right) \\
(5,2)
\end{gathered}
$$

The circumcenter of $\Delta Q R S$ is

10. For the next Fourth of July, the towns of Ashton, Bradford, and Clearview will launch a fireworks display from a boat in the lake.

Graph the perpendicular bisectors and enter the coordinates to show where the boat should be positioned so that it is the same distance from all three towns. Round to the nearest tenth. Complete the justification for your graph.

The boat should be positioned at location $(0,2.5)$.
Let the three towns be vertices of a triangle. By the Circumcenter Theorem, the circumcenter of the triangle is equidistant \quad from the vertices. To find the circumcenter, find the perpendicular bisectors of each side. The position of the boat is the circumcenter.

