Objective: The students will complete assignment 17.4 Investigating Symmetry and will demonstrate their understanding with an accuracy rate of 70% or higher on Quiz-19 tomorrow.*

Standards G-CO. Experiment with transformations in the plane.

Mathematics I

TURN IN LATE OR MISSINE WORK
*/faccuracy of 70% or higher is not achieved, the student(s) will be required to retake it.

A figure has line symmetry if it can be reflected across a line so that the image maps onto the preimage. The line of symmetry divides the figure into two congruent halves.

Number of lines of symmetry: 4

A figure has rotational symmetry if it can be rotated around a point by an angle greater than 0° and less than 360° so that the image maps onto the preimage.

my.hrw.com

17.4 Investigating Symmetry

$$
17.4
$$

Part 1
Tell whether the figure has line symmetry, rotational symmetry, both types of symmetry, or no symmetry.
The figure has both types of v symmetry.

Part 2

How many lines of symmetry does the figure have? Enter the comma-separated list of the angles of rotation less than 360°.

[^0]

Part 1

Tell whether the figure has line symmetry, rotational symmetry, both types of symmetry, or no symmetry. The figure has line \quad symmetry.

Part 2

How many lines of symmetry does the figure have?
The figure has 1 line(s) of symmetry.

Part 1

Tell whether the figure has line symmetry, rotational symmetry, both types of symmetry, or no symmetry.
The figure has rotational vymmetry.

Part 2

Enter the comma-separated list of the angles of rotation less than 360°.
The angles of rotation are $72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ} \longleftrightarrow \square^{\circ}$
*Don't forget to add Degree $\left(^{\circ}\right.$) symbol on the back of each number !!

Part 1
Tell whether the figure has line symmetry, rotational symmetry, both types of symmetry, or no symmetry.
The figure has no
v symmetry.

Part 2

How do you know?
There are no lines V about which the figure can be mirrored onto itself and no angles v of rotation that bring the figure onto itself.

How many lines of symmetry does the figure have? If the figure has no line symmetry, enter the number zero.

The figure has $1 \quad$ line(s) of symmetry.

6

How many lines of symmetry does the figure have? If the figure has no line symmetry, enter the number zero.

The figure has 8 line(s) of symmetry.

How many lines of symmetry does the figure have? If the figure has no line symmetry, enter the number zero.

The figure has $1 \quad$ line(s) of symmetry.

List the angles of rotation, separated by commas, less than 360° if the figure has rotational symmetry. If the figure does not have rotational symmetry, enter the number zero.

The list of angles of rotation is

```
        0
```

*A symmetry angle has to map the figure exactly back to itself. Consider the side lengths and angles of the figure. The figure shown has no angles of rotational symmetry.

9

List the angles of rotation, separated by commas, less than 360° if the figure has rotational symmetry. If the figure does not have rotational symmetry, enter the number zero.

The list of angles of rotation is 0
*A symmetry angle has to map the figure exactly back to itself. Consider the side lengths and angles of the figure. The figure shown has no angles of rotational symmetry.
$10 \frac{360}{8}=45 \begin{aligned} & \text { *The other angles of rotation for the figure are the multiples of } 45^{\circ} \\ & \text { that are less than } 360^{\circ} \text {. }\end{aligned}$
$45^{\circ}(1), 45^{\circ}(2), 45^{\circ}(3), 45^{\circ}(4), 45^{\circ}(5), 45^{\circ}(6), 45^{\circ}(7)$.

List the angles of rotation, separated by commas, less than 360° if the figure has rotational symmetry. If the figure does not have rotational symmetry, enter the number zero.

The list of angles of rotation is $45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}, 315^{\circ} \rightarrow \square^{\circ}$
*Don't forget to add
Degree $\left(^{\circ}\right.$) symbol on the back of each number !!

$$
\begin{aligned}
& \text { Never say, } \\
& \text { "I can't" } \\
& \text { Always say, } \\
& \text { "I'll try" }
\end{aligned}
$$

[^0]: $\frac{1}{4}$ of $360^{\circ}=90^{\circ}$.
 *The other angles of rotation for the figure are the multiples of 90° that are less than 360°.

