MAIN IDEA

- Graph dilations on a coordinate plane.

New Vocabulary

- dilation
- center
- enlargement
- reduction

EXAMPLE Draw a Dilation

(1) Copy polygon PQRS on graph paper. Then draw the image of the figure after a dilation with center S by a scale factor of $\frac{1}{2}$.

EXAMPLE Draw a Dilation

(1) Step 1 Use segment $S P$ to locate point P^{\prime}.

Step 2 Use a ruler to locate point P^{\prime}
on $\overline{S P}$ such that $S P^{\prime}=\frac{1}{2}(S P)$.

Step 3 Repeat Steps 1 and 2 for points Q^{\prime} and R^{\prime}. Be sure to draw segment $S Q$ before locating point Q^{\prime}. Then draw polygon $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$, where $S=S^{\prime}$.

CHECK Your Progress

(1) Copy polygon $A B C D$ on graph paper. Then draw the image of the figure after a dilation with center \boldsymbol{A} by a scale factor of 2 .
A.

B.

C.

D.

EXAMPLE Graph a Dilation

(2) Graph $\triangle M N O$ with vertices $M(3,-1), N(2,-2)$, and
$O(0,4)$. Then graph its image $\triangle M^{\prime} N^{\prime} O^{\prime}$ after a dilation with a scale factor of $\frac{3}{2}$.

To find the vertices of the dilation, multiply each coordinate in the ordered pairs by $\frac{3}{2}$. The graph both images on the same axes.

EXAMPIE Graph a Dilation

(2) $M(3,-1) \rightarrow\left(3 \bullet \frac{3}{2},-1 \bullet \frac{3}{2}\right) \rightarrow M^{\prime}\left(\frac{9}{2},-\frac{3}{2}\right)$
$N(2,-2) \quad \rightarrow\left(2 \cdot \frac{3}{2},-2 \cdot \frac{3}{2}\right) \rightarrow N^{\prime}(3,-3)$
$O(0,4)$

$$
\rightarrow\left(0 \bullet \frac{3}{2}, 4 \bullet \frac{3}{2}\right) \quad \rightarrow O^{\prime}(0,6)
$$

EXAMPLE Graph a Dilation

(2) Answer:

$$
\begin{aligned}
& M^{\prime}\left(\frac{9}{2},-\frac{3}{2}\right) \\
& N^{\prime}(3,-3) \\
& O^{\prime}(0,6)
\end{aligned}
$$

Check
Draw lines through the origin and each of the vertices of the original figure. The vertices of the dilation should lie on those same lines.

CHECK Your Progress

(2) Graph $\triangle J K L$ with vertices $J(2,4), K(4,-6)$, and $L(0,-4)$. Then graph its image $\Delta J^{\prime} K^{\prime} L^{\prime}$ after a dilation with a scale factor of $\frac{1}{2}$.

	4	J	y			
		8				
		-				
		,				
		1				
	0	-				\boldsymbol{X}
		-				
			,			
			,			
	L		,			
			,			
	\downarrow		K			

CHECK Your Progress

(2) (A).

B.

C.

D.

COncepts in MQtion

Interactive Lab:
Dilations
Click here to view!

EXAMPLE
 Find and Classify a Scale Factor

(3) In the figure, segment $X^{\prime} Y^{\prime}$ is a dilation of segment $X Y$. Find the scale factor of the dilation, and classify it as an enlargement or as a reduction.

EXAMPLE
 Find and Classify a Scale Factor

(3) Write a ratio of the x-or y-coordinate of one vertex of the dilation to the x-or y-coordinate of the corresponding vertex of the original figure. Use the y-coordinates of $X(-4,2)$ and $X^{\prime}(-2,1)$.

$$
\frac{y \text {-coordinate of } X^{\prime}}{y \text {-coordinate of } X}=\frac{1}{2}
$$

Answer: The scale factor is $\frac{1}{2}$. Since the image is smaller than the original figure, the dilation is a reduction.

CHECK Your Progress

(3) In the figure, segment $A^{\prime} B^{\prime}$ is a dilation of segment $A B$. Find the scale factor of the dilation, and classify it as an enlargement or as a reduction.
A. 3; enlargement

B. 2; enlargement
C. $\frac{1}{3}$; reduction
D. $\frac{1}{3}$; reduction

(4) EYES The pupil of Josh's eye is 6 millimeters in diameter. His doctor uses medicine to dilate his pupils by a factor of $\frac{3}{2}$. Find the new diameter once his pupil is dilated.

Words The size of the pupil after dilating is $\frac{3}{2}$ the size of the pupil before dilation.
Variable Let a represent the size of the pupil after dilation.

$$
a=\frac{3}{2} \bullet 6
$$

(4) $a=\frac{3}{2} \cdot 6$
$a=9$
Multiply.

Answer: His pupil will be 9 millimeters in diameter once dilated.

CHECK Your Progress

(4) EYES The pupil of Laden's eye is 8 millimeters in diameter. Her doctor uses medicine to dilate his pupils by a factor of $\frac{3}{2}$. Find the new diameter once his pupil is dilated.
A. 10 mm
B. 11 mm
C. 12 mm
D. 14 mm

F) Five-Minute CHECK (over Lesson 4-7)
(1) Determine whether the pair of polygons is similar. Explain your reasoning.

A. Yes; corresponding sides are not proportional.
B. Yes; corresponding sides are proportional.
C. No; corresponding sides are not proportional.
D. No; corresponding sides are proportional.
(2) The pair of polygons is similar. Write a proportion to find the missing measure and solve.
A. $\frac{8}{4}=\frac{6}{x} ; x=3$

(B.) $\frac{3}{4}=\frac{x}{6} ; x=4.5$
C. $\frac{4}{3}=\frac{x}{6} ; x=8$
D. $\frac{4}{8}=\frac{6}{x} ; x=12$

Fivo-Minute CHECK 3 (over Lesson 4-7)

Standardized Test Practice

(3) A greeting card is 8 inches by 6 inches, but it will have to be cut to fit in an envelope. The scale factor from the original card to the smaller card is 5:4. Find the dimensions of the smaller card.
A. 3 in. $\times 3 \frac{3}{4}$ in.
B. $10 \mathrm{in} \times 7 \frac{2}{4} \mathrm{in}$.
C. $6 \frac{2}{3}$ in. $\times 5 \frac{1}{3}$ in.
(D.) $6 \frac{2}{5} \mathrm{in} . \times 4 \frac{4}{5} \mathrm{in}$.

CheckPoint

