Engaging in the Mathematical Practices (Look-fors)

Mat	matical Practices	Students:	Teachers:
$\begin{aligned} & \text { E } \\ & \sum_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 00 \\ & 0 \\ & 0 \end{aligned}$	1. Make sense of problems and persevere in solving them	Explain the meaning of the problem and look for entry points to its solution. Analyze and organize information (givens, constraints, relationships, goals). Make conjectures and plan a solution pathway. Consider analogous problems and try special cases. Use different representations of the problem to understand and solve it. Monitor and evaluate progress on the problem and change course as needed. Check answers to problems and ask, "Does this make sense?" Understand the approaches of others and identify connections between different approaches.	Involve students in rich problem-based tasks that encourage them to persevere in order to reach a solution. Provide opportunities for productive struggle and help students persevere by providing just-in-time scaffolds and checking in with them to help them clarify their thinking and process. Provide opportunities for students to solve problems that have multiple approaches and solutions. Encourage students to represent their thinking while problem solving. Use tasks that lend themselves to multiple representations.
	6. Attend to precision	Communicate precisely to others using clear definitions and math vocabulary. State the meaning of symbols they use and use them appropriately. Specify units of measure when working with quantities. Calculate accurately and efficiently, expressing numerical answers with a degree of precision appropriate for the problem context. Provide carefully formulated explanations. Accurately label diagrams and axes to clarify the correspondence with quantities in the problem.	Help students learn math definitions by bridging the gap between informal math language and formal terminology as students engage in mathematical explorations and experiences. Consistently model precise communication with notation and vocabulary. Encourage students to focus on the clarity of the definitions, notation, and vocabulary used to convey their reasoning. Help students consider the accuracy and efficiency of computation and problem-based solutions.
Reasoning and Explaining	2. Reason abstractly and quantitatively	\square Make sense of quantities and their relationships in problem situations. Decontextualize: abstract a given situation and represent it symbolically. Contextualize: relate the symbolic representation of a problem back to the situation it represents. Create a coherent representation of the problem at hand. Consider the units involved in a problem. Know and flexibly use different properties of operations and objects.	Help students understand the relationship between a problem scenario and its mathematical representation. Encourage students to use properties of operations and objects when solving problems. Ask how, why, and when questions to prompt students to reflect on their reasoning.
	3. Construct viable arguments and critique the reasoning of others	Understand and use stated assumptions, definitions, and previously established results in constructing arguments. Construct arguments and justify conclusions using objects, drawings, diagrams, and/or actions. Make conjectures and build a logical progression of statements to explore the truth of their conjecture. Listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the argument. Compare arguments and distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Analyze situations by breaking them into cases and use counterexamples to show a statement if false.	Provide opportunities for students to explain their thinking aloud and encourage them to use objects, drawings, diagrams, and/or actions to support their explanations. Provide opportunities for students to listen to and compare the solution strategies of others. Provide opportunities for students to engage in explorations and/or investigations and make conjectures. Provide opportunities for error analysis.

SJCOE $_{*}$ All indicators are not necessary for providing full evidence of a practice. Each practice may not be evident during every lesson.

