Objective: The students will complete assignment Study Guide Exam-5: Trigonometry with Right Triangles and will demonstrate their understanding with an accuracy rate of 70\% or higher on Exam-5 tomorrow.*

Standards G-SRT. Define trigonometric ratios and solve problems involving right triangles.

Mathematics II

Study Guide Exam-5: Trigonometry with Right Triangles

TURN IN LATE OR MISSING WORK

"/f accuracy of 70% or higher is not a chieved, the student(s) will be required to retakeit.

1. A painter is placing a ladder to reach the third story window, which is 30 feet above the ground and makes an angle with the ground of 80°. How far out from the building does the base of the ladder need to be positioned? Round your answer to the nearest tenth.

The base of the ladder needs to be positioned
5.3 feet out from the building.

2 A ladder needs to reach a second-story window that is 16 feet above the ground and make an angle with the ground of 70°. How far out from the building does the base of the ladder need to be positioned? Round your answer to the nearest tenth.

The base of the ladder needs to be 5.8 feet away from the wall.

Find the tangent of $\angle Q$. Enter the ratio as a fraction in reduced form and as a decimal rounded to the nearest hundredth.

Find the tangent of $\angle Q$. Enter the ratio as a fraction in reduced form and as a decimal rounded to the nearest hundredth.

$$
\tan \angle R=\frac{12}{5} \quad \approx 2.40
$$

Reduce. $\frac{24 \div 2}{10 \div 2}=\frac{12}{5}$ wheelchairs is 6°. At least how long must the new ramp be? Round to the nearest tenth of a foot.

The ramp must be at least 23.0 ft long. $\sin A=\frac{B C}{A C}$

$$
z=22.96025 \begin{aligned}
& \sin 6^{\circ}=\frac{2.4}{z} \\
& \\
& \\
& z \frac{2.4}{\sin 6^{\circ}} \approx 23.0
\end{aligned}
$$

6
Find the unknown length x in the right triangle, to the nearest tenth.

$$
\begin{aligned}
& \cos E=\frac{E F}{D E} \\
& 26 \cdot \cos 50^{\circ}=\frac{x}{26} \cdot 26 \\
& 26 \cos 50^{\circ}=x \\
& x \approx 16.7 \\
& x \approx 16.7
\end{aligned}
$$

7 Find the value of x in the right triangle.

$$
\begin{aligned}
B C & =2 A C \\
5 x-9 & =2 x \\
3 x & =9 \\
x & =3 \\
x=3 &
\end{aligned}
$$

$\triangle A B C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$

8 Find the value of x in the right triangle.

$$
\begin{aligned}
\mathbf{J K} & =\mathbf{J L} \\
\frac{x}{2} & =(5 x-45) \\
x & =2(5 x-45) \\
x & =10 x-90 \\
90 & =9 x \\
10 & =x
\end{aligned}
$$

The value of x is 10 .

9 Use trigonometric ratios to solve the right triangle. The length of hypotenuse $J L$ is $8 \sqrt{6}$.

The length of leg $K L$ is $8 \sqrt{3}$. J K is same length as $K L$

10 Use trigonometric ratios to solve the right triangle.

Use a trigonometric ratio to find the distance EF.
A building casts a 36 m shadow when the Sun is at an angle of 29° to the vertical. How tall is the the building, to the nearest meter? Use a trigonometric ratio to find the distance FE.

Shadow

12 Use a trigonometric ratio to find the distance DF. Round your answer to the nearest integer.
A building casts a 40 m shadow when the Sun is at an angle of 26° to the vertical. How far is it from the top of the building to the tip of the shadow to the nearest meter? Use a trigonometric ratio to find the distance DF.

$$
\sin F=\frac{D E}{D F}
$$

$$
\sin 26^{\circ}=\frac{40}{D F}
$$

$$
D F=\frac{40}{\sin 26^{\circ}}
$$

$$
D F \approx 91 \mathrm{~m}
$$

For safety, the angle a wheelchair ramp makes with the horizontal should be no more than 3.5°. What is the maximum height of a ramp of length 24 ft ? What distance along the ground would this ramp cover? Round to the nearest tenth of a foot.

$$
\begin{aligned}
\sin C & =\frac{A B}{A C} \\
\sin 3.5^{\circ} & =\frac{A B}{24}
\end{aligned}
$$

$$
A B=24 \sin 3.5^{\circ}
$$

$$
A B \approx 1.5 \mathrm{ft}
$$

The maximum height of the ramp is 1.5 ft .

$$
\text { The maximum height of the ramp is } 1.5 \mathrm{ft} \text {. }
$$

The maximum length of the ramp is 24 ft

14 Given the trigonometric function and the location of the terminal side of the angle, drag and drop each function description into the correct box to describe whether the function values will be positive or negative.
$(\operatorname{Cos} x, \operatorname{Sin} y)$

$$
\begin{aligned}
\operatorname{Tan} & =\frac{\operatorname{Sin} y}{\operatorname{Cos} x} \\
& -/+=- \\
& -/-=+ \\
& +/+=+
\end{aligned}
$$

Positive	Negative
$\tan \theta$, Quadrant III	$\tan \theta$, Quadrant II $\cos \theta$, Quadrant I $\sin \theta$, Quadrant IV $\sin \theta$, Quadrant III

15 Find the complementary angle to 42°.
The complementary angle is $48 \quad \circ$.

Let the complementary angle be x.

$$
\begin{aligned}
x+42^{\circ} & =90^{\circ} \\
x & =90^{\circ}-42^{\circ} \\
x & =48^{\circ}
\end{aligned}
$$

The complementary angle is 48°.

$$
\begin{aligned}
& \text { Never say, } \\
& \text { "I can't" } \\
& \text { Always say, } \\
& \text { "I'll try" }
\end{aligned}
$$

