Lesson 1: 6.1 Parent Quadratic Function

A quadratic function graphs as a parabola.
The coefficient of x^{2} declares the direction and width of the parabola.
The constant declares the \boldsymbol{y}-intercept of the parabola.

1. $y=3 x^{2}+2$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .
2. $y=4 x^{2}+1$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .

Skill Development/Guided Practice (continued)

A quadratic function graphs as a parabola.
The coefficient of x^{2} declares the direction and width of the parabola.
The constant declares the \boldsymbol{y}-intercept of the parabola.
3. $y=\frac{1}{4} x^{2}-2$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .
4. $y=\frac{1}{4} x^{2}+1$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .

Skill Development/Guided Practice (continued)

A quadratic function graphs as a parabola.
The coefficient of x^{2} declares the direction and width of the parabola.
The constant declares the \boldsymbol{y}-intercept of the parabola.
5. $y=-3 x^{2}-1$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .
6. $y=-4 x^{2}+2$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .

A

B

C

D

Skill Development/Guided Practice (continued)

A quadratic function graphs as a parabola.
The coefficient of x^{2} declares the direction and width of the parabola.
The constant declares the \boldsymbol{y}-intercept of the parabola.
7. $y=-\frac{3}{4} x^{2}-1$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .
8. $y=-\frac{1}{4} x^{2}+2$

Direction: \qquad Width: \qquad y-intercept: \qquad
The graph of the quadratic function is \qquad .

A
B

C

D

Solving Math Problems

1 Determine what the question is asking.
2 Determine the math conceptrequired.
3 Determine relevant information.
4 Solve the problem, then interpret the answer.
5 Check the reasonableness of your answer.
Describe the graph of the parabola, then find the quadratic function which represents the parabola. The parabolas are of the form $\boldsymbol{a x} \boldsymbol{x}^{2}+\boldsymbol{c}$. (Hint: Substitute the values of a point on the parabola to find $\boldsymbol{a} \boldsymbol{x}^{2}$)

(1) How did I/you determine what the question is asking?
(2. How did I/you determine the math concept required?

3 How did I/you determine the relevant information?
4 How did I/you solve and interpret the problem?
(5) How did I/you check the reasonableness of the answer?

A quadratic function graphs as a parabola.
The coefficient of x^{2} declares the direction and width of the parabola.
The constant declares the y-intercept of the parabola.

$$
y= \pm \boldsymbol{a} x^{2}+\boldsymbol{c} \text { direction }
$$

1. $y=3 x^{2}+1$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .
2. $y=\frac{1}{2} x^{2}-3$

Direction: \qquad Width: \qquad
y-intercept:
The graph of the quadratic function is \qquad .

A

B

C

D

Independent Practice (continued)

A quadratic function graphs as a parabola.
The coefficient of x^{2} declares the direction and width of the parabola.
The constant declares the y-intercept of the parabola.
3. $y=-5 x^{2}-3$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .
4. $y=-\frac{1}{8} x^{2}-2$

Direction: \qquad Width: \qquad
y-intercept: \qquad
The graph of the quadratic function is \qquad .

A

B

C

D

Solving Math Problems

1 Determine what the question is asking.
2 Determine the math concept required.
3 Determine relevant information.
4 Solve the problem, then interpret the answer.
5 Check the reasonableness of your answer.
Describe the graph of the parabola, then find the quadratic function which represents the parabola. The parabolas are of the form $\boldsymbol{a x} \boldsymbol{x}^{2}+\boldsymbol{c}$. (Hint: Substitute the values of a point on the parabola to find $\boldsymbol{a} \boldsymbol{x}^{2}$)

(1) How did I/you determine what the question is asking?
(2) How did I/you determine the math concept required?
(3) How did I/you determine the relevant information?
(4) How did I/you solve and interpret the problem?
(5) How did I/you check the reasonableness of the answer?

DataWORKS

Educational Research

