A two-way frequency table shows data from one sample group as it rela tes to two different categories.

Two-Way Frequenc y Tables

There are $\mathbf{1 , 1 8 2}$ students at a high school.

	Math	Science	English	Total
$9^{\text {th }}$	6	9	4	19
$10^{\text {th }}$	6	4	10	20
$11^{\text {th }}$	12	13	7	32
$12^{\text {th }}$	15	6	8	29
Total	39	32	29	$\mathbf{1 0 0}$

The raw data isconverted to a two-way table comparing two different categories.

Survey

1. Name:
2. Grade:
3. Favorite Subject
4. Favorite Sport

Raw Data

	Item 1	Item 2	Item 3	Item 4
1.	Holly	$9^{\text {th }}$	English	Football
2.	Sergio	$11^{\text {th }}$	Science	Basketball
3.	Laura	$10^{\text {th }}$	Math	Football
4.	Phyllis	$9^{\text {th }}$	Math	Soccer

100 students a re selected at random to take a

If a student from the high school is selected at random, what is the probability he or she will be in $10^{\text {th }}$ grade?

CF

Explain where the data in a two-way table comesfrom.

A two-way frequency table shows data from one sample group as it relates to two different categories.

- A two-way frequency table can be used to a pproximate the probability of events. Two-Way Frequency Tables

A survey asks 100 high school students their favorite subject in sc hool and compares the results to their grade. The results are shown in the table below.

	Math	Science	English	Total
$9^{\text {th }}$	6	9	5	20
$10^{\text {th }}$	6	4	9	19
$11^{\text {th }}$	12	13	7	32
$12^{\text {th }}$	15	6	8	29
Total	39	32	29	$\mathbf{1 0 0}$

CF

Which shows the approximate probability of students who favor math? How do you know?

$$
A P(\text { Math })=\frac{6}{100}=0.06 \quad \text { B } P(\text { Math })=\frac{39}{100}=0.39
$$

Skill Development

1 Read the situation carefully.
a Identify the two categories. (underline)
2 Identify the sample space in question. (circle)
3 Approximate the probability.
4 Interpret your a nswer. (write)

A survey of 50 male and female students is conducted to determine each student's choice of their favorite sport from soccer, football, and basketball.

	Soccer	Football	Basketball	Total
Male	6	9	5	20
Female	12	8	10	30
Total	18	17	15	$\mathbf{5 0}$

1. Estimate the probability that a student will favor football.
2. Estimate the probability that a student is female and favors football.
3. Estimate the probability that a student will favor soc cer.
4. Estimate the probability that a student is male and favors soccer.

Conditional probability is the chance, or likelihood of an outc ome occurning given that another event (or condition) has already oc curred.

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
$$

Conditional Probability

Estimate the probability that a randomly selected student will favor science given that the student is in tenth grade.
$\boldsymbol{P}($ Science $\mid 10$ th $)=\frac{\boldsymbol{P}(\text { Science and } 10 t h)}{\boldsymbol{P}(10 t h)}=\frac{\mathbf{4} / 100}{20 / 100}=\frac{\mathbf{4}}{\mathbf{2 0}}=\frac{\mathbf{2 0}}{\mathbf{1 0 0}}=\mathbf{0 . 2 0}$
Which equation represents the conditional probability of students who favor math given that the student is in ninth grade? How do you know?

$$
\text { A } \quad P(\text { Math } \mid 9 t h)=\frac{P(\text { Math and } 9 \text { th })}{P(9 t h)} \quad \text { B } \quad P(9 t h \mid \text { Math })=\frac{P(9 t h \text { and Math })}{P(\text { Math })}
$$

Skill Development
1 Read the situation carefully.
a Identify the two categories. (underline)
2 Identify the sample space in question. (circle)
3 Approximate the probability.
4 Interpret your answer. (write)

A survey of 50 male and female students is conducted to determine each student's choice of their favorite sport from soccer, football, and basketball.

	Soccer	Football	Basketball	Total
Male	6	9	5	20
Female	12	8	10	30
Total	18	17	15	50

5. Estimate the probability that a student will favor football given that the student is male.
6. Estimate the probability that a student will favor ba sketball or football given that the student is female.
7. Estimate the probability that a student will favor soccer given that the student is female.

Determine whether the given events are independent. Explain. $\quad \boldsymbol{P}(\boldsymbol{s o c c e r} \mid$ female)
9. A teac her takes a sample of 40 high school underclassmen and upperclassman to determine how many students play a sport.

The probability of a randomly selected student from the sample playing a sport, given that student is an upperclassmen is $\frac{\mathbf{1 2}}{\mathbf{2 5}}$. Fill in the two-way table to show how this is possible.

Underclassmen Upperclassmen Total
Sport
No Sport
Total
10. A teacher takes a sample of 30 high school underclassmen and upperclassman to determine how many students play an instrument.

The probability of a randomly selected student from the sample not playing an instrument, given that student is an underclassmen is $\frac{8}{17}$. Fill in the two-way table to show how this is possible.

Underclassmen Upperclassmen Total
Instrument
No Instrument

Total

Lamy is regularly late for work. He decidesit may be time to try an altemate route. During the next 6 weeks, he randomly selects between Route A and Route B, recording whether he is on-time or late.

1. Estimate the probability

Lamy will be on-time.

	Route A	Route B	Total
On-Time			
Late			
Total			

2. Estimate the probability that Lary will be late, given that he selected Route A.

Which route is Lamy better off taking? Explain your answer using data from the two-way table.

What did you leam today about constructing and interpreting two-way tables?

A sample of 80 teachers a nd students at a high school are surveyed to determine their opinion of a new, stricter dress code. The results of the survey are displayed in the twoway table below.

	Approve	Oppose	No Opinion	Total
Teacher	15	8	2	25
Student	13	36	6	55
Total	28	44	8	$\mathbf{8 0}$

1. Estimate the probability a participant of the survey will a pprove of the new dresscode.
2. Estimate the probability a participant of the survey will approve of the new dress code given that the partic ipant is a teacher.
3. Estimate the probability a participant of the survey will oppose or have no opinion of the new dress code.
4. Estimate the probability that a partic ipant will oppose or have no opinion of the new dress code, given that the partic ipant is a student.

Determine whether the given events are independent. Explain. \boldsymbol{P} (approve | teacher)

A survey is conducted to determine the favorite movie genres of 120 participants from three different age ranges.

	Comedy	Drama	Documentary	Total
$10-19$	28	10	2	40
$20-29$	18	16	6	40
$30-39$	14	16	10	40
Total	60	42	18	120

1. Estimate the probability a participant of the survey will favor comedies.
2. Estimate the probability a participant will favor dramas, given that the participant is in the 20-29 age range.
3. Estimate the probability a participant of the survey will favor dramas or documentaries.
4. Estimate the probability that a partic ipant will favor comedies or dramas, given that the participant is in the $30-39$ age range.

Choose Yesor No to indicate whether each statement is true about the two-way frequency table in the problem above.
A. The probability of a partic ipant favoring dramas is 0.42 .

O Yes O No
B. It is more likely that someone in the 30-39 age range will favor dramas than comedies.

O Yes O No
C. More participants favored comedies in the 20-29 a ge range than the 10-19 range.

O Yes O No
D. Favoring documentaries and being in the 20-29 age range are independent events.

O Yes O No

A survey of 200 male and female high school students is conducted to determine their involvement in the activities the school offers.

	AV Club	Chess Club	Jam Band	None	Total
Male	22	16	23	39	100
Female	16	18	31	35	100
Total	38	34	54	74	200

1. Estimate the probability a student will be a member of the Chess Club.
2. Estimate the probability a student will take part in any activity, given that the student is female.
3. Is it more likely that a student will be in the J azz Band or the AV Club? Explain your answer.
4. Given that a student is male, is it more likely that the student will be involved in Chess Club or no activities? Expla in your answer.
5. Given that a student is involved in the AV Club, is it more likely that the student will be male or female? Expla in your answer.
6. Is it more likely that a male student will be in the Chess Club or a female student will be in AV Club? Expla in your answer.

A company wants to track their customer service representatives' success at managing customer complaints. To do so, a customer satisfaction survey is sent to 180 customers following any compla int marked as "resolved". The results of 3 customer service teams are shown below.

	Satisfied	Dissa tisfied	Total
Team A	44	16	70
Team B	28	26	54
Team C	32	24	56
Total	116	64	180

1. Estimate the probability a customer is dissatisfied with the customer service.
2. Estimate the probability that a customer is satisfied, given their representative was in Team C.
3. After the survey is completed, the Customer Service Ma na ger performs employee evaluations. Using the survey results as a guide, each member of the top-performing team receives a $\$ 1,500$ bonus. The team performing second best will be awarded a $\$ 750$ bonus and the lowest performing team will be placed in a retraining program. Which teams receive the bonuses? Which team will be placed in the retraining program? Expla in your a nswer.
