MAKING \& USING A STUDY GUIDE

Exam-1: Similarity and Transformations
Study Guide: helps you summarize, ${ }^{2}$ Visualize, and analyze ${ }^{(3)}$ concepts learned in class

* Warning: simply making a study guide does not guarantee you an At on the test.

Enter the rule used to transform $\triangle A B C$. If there is a dilation, dilate with respect to the origin.

First, compress $\triangle A B C$ $\left(\frac{x}{2}, \frac{y}{2}\right)$

Next, shift $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$

$$
(x, y) \rightarrow\left(\frac{x}{2}-3, \frac{y}{2}-3\right)
$$

The rule used to transform $\triangle A B C$ is $(x, y) \rightarrow\left(\frac{x}{2}-3, \frac{y}{2}-3\right)$

Complete the description of the transformation shown $\triangle A B C$ to $\Delta A^{\prime} B^{\prime} C^{\prime}$.

2

Compress $\triangle A B C$ vertically and horizontally by a factor of 2 , then shift it to the left 2 unit(s) and down 3 unit(s).

Determine if the transformation is a dilation.

The transformation is not \mathbf{v} a dilation.
Note: Dilation is change in the size of the image, not a flip.

The scale factor ot the dilation is \qquad
 $\frac{1}{2}$

Square B is a dilation of square A. What is the scale factor?

$$
\frac{B^{\prime}}{A}=\frac{18}{21}=\frac{i^{18}}{21}
$$

The scale factor is $\frac{6}{7}$

You work at a photography store. A customer has a picture that is 4.5 inches tall. The customer wants a reduced copy of the picture to fit a space of 3.6 inches tall on a postcard. What scale factor should you use to reduce the picture to the correct size?

A scale factor of 4 to 5 should be used.

For the similar figures, find a sequence of similarity transformations that maps one figure to the other. Complete the coordinate notation for each transformation.
$\operatorname{Map} A B C D$ to $E F G H$.

You can map $A B C D$ to $E F G H$ by a reflection followed by a dilation. Drag and drop the ordered pair into the transformations to complete the coordinate notation.

The reflection is $(x, y) \rightarrow \quad(x,-y)$
The dilation is $(x, y) \rightarrow(2 x, 2 y)$.

Use the diagram in which $\triangle A B E \sim \triangle A C D$.
solve for x

Find the value of x.
The value of x is 9 .

Find the value of y.

$$
\begin{array}{rlr}
\frac{A D}{A E} & =\frac{C D}{B E} \\
\frac{5.6+y}{5.6} & =\frac{5}{4} & \\
5.6+y & =\frac{5}{4} \cdot 5.6 & \text { Mubstitute the lengths of } A D, A E, B E, \text { and } C D . \\
5.6+y & =7 & \\
\text { Simplify both sides by } 5.6 . \\
y & =1.4 & \text { Subtract } 5.6 \text { from side. both sides. }
\end{array}
$$

The figures in the picture are similar to each other. Find the value of x, rounded to the nearest whole number.

The value of x is \square
The longer bases of the trapezoids are 6 units and 3 units, so the scale factor is $2: 1$

```
(x+1)}(x-4) =\frac{2}{1}\quad\mathrm{ Set up the proportion.
    x+1 = 2(x-4) Multiply both sides by (x-4).
    x+1 = 2x-8 Distribute the 2.
        9=x Subtract }x\mathrm{ from both sides and add 8 to both sides.
```

In the diagram, $\triangle N P Q \sim \triangle N L M$ and $P L=8$.
a. Find the value of x.

Since $\triangle N P Q$ is similar to $\triangle N L M$, $\angle L \cong \angle P$ and the measure of their angles are $3 x+24=60$ Set $m \angle L$ equal to $m \angle P$.
$3 x=36$ Subtract 24 from both sides.
$x=12$ Divide both sides by 3 .

$\triangle M N O$ maps to $\triangle R S T$ with the transformation $(x, y) \longrightarrow\left(\frac{1}{3} x, \frac{1}{3} y\right)$. Choose True or False for each
statement. Div, ${ }^{2}$ by
A. If $R T=3, M O=9$.
$\triangle M N O$ maps to $\triangle R S T$

$$
g / 3=3
$$

B. If $R T=12, M O=4$.

$\triangle M N O$ maps to $\triangle R S T$
C If RT $\quad 4 / 3 \neq 12$
C. If $R T=9, M O=27$.
$\triangle M N O$ maps to $\triangle R S T$

$$
27 / 3=9
$$

13 Show whether or not the pair of triangles is similar. Complete the justification of your answer, and select a similarity statement if the triangles are similar.

Find the appropriate statements about the triangles.
$\triangle A B \subseteq$ is similar to $\triangle B T S$. Complete a proportion that contains $\overline{A C}$ and $\overline{R T}$. Also complete the angle congruence statements that must be true.

$$
\begin{aligned}
& \frac{A C}{R S}=\frac{A B}{R T} \\
& \angle A \cong \quad \nabla \angle R \\
& \angle B \cong \quad \text { ŋ } \angle T \\
& \angle C \cong \quad \nabla \angle
\end{aligned}
$$

Find the missing lengths. If needed, give the answer in simplest radical form.

$$
\begin{gathered}
P Q=75 \\
\frac{P Q}{T S}=\frac{Q R}{S 4} \\
\frac{P Q}{45}=\frac{52}{3 Q} \\
\frac{P Q}{45}=\frac{5}{3}
\end{gathered}
$$

$P R=775 \sqrt{3}$

