MAKING \& USING A $\frac{\text { STUDY GUIDE }}{\text { for a t st }}$
-
Study Guide: helps you summarize, ${ }^{2}$ visualize, and analyze ${ }^{3}$ concepts learned in class

* Warning: simply making a study guide does not guarantee you an At on the test.

How can you use factoring to solve quadratic equations in standard form?
You can factor v the right side of the quadratic equation. Then set each linear factor equal to 0
Solve each linear equation. These are $\boldsymbol{\text { the solutions of the original quadratic equation. }}$

Just an example:

Solve the polynomial equation by factoring.

$$
\begin{array}{cc}
\mathbf{4} \boldsymbol{x}^{6}+\mathbf{4} \boldsymbol{x}^{\mathbf{5}} \mathbf{- \mathbf { 2 4 }} \boldsymbol{x}^{4}=\mathbf{0} \\
4 x^{4}\left(x^{2}+x-6\right)=0 & \text { Factor out the GCF, } 4 x^{4} \\
4 x^{4}(x+3)(x-2)=0 & \text { Factor the quadratic. } \\
4 x^{4}=0 \text { or }(x+3)=0 \text { or }(x-2)=0 & \text { Set each factor } \\
x=0, x=-3, x=2 & \text { Solve for } x .
\end{array}
$$

The roots are $0,-3$, and 2 .

2
Perfect Square Trinomial

Difference of Squares

Identify the expression as a perfect-square trinomial, a difference of squares, or neither. Factor the expression.
$\sqrt{25 p^{2}+80 p+\sqrt{64}}$ *Take the square of root of first and last terms
The expression is a perfect-square trinomial \mathbf{v}.
The factored expression is $(5 p+8)^{2}$

Identify the expression as a perfect-square trinomial, a difference of squares, or neither. Factor the expression.
$p^{2}-10 p-24$
The expression is

is neither	Factors of -24	Sum of Factors +
	1 and -24	$1-24=-23$
METH®D	2 and -12	$2-12=-10$
	3 and -8	$3-8=-5$
	4 and -6	$4-6=-2$
	-1 and 24	$-1+24=23$
	-2 and 12	$-2+12=10$
	-3 and 8	$-3+8=5$
$2)(p-12)$	-4 and 6	$-4+6=2$

The factored expression is $(\mathrm{p}+2)(\mathrm{p}-12)$
${ }^{4}$ Factor the expressions.

$$
x^{2}-14 x+48=(x-6)(x-8
$$

| Factors of 48 | Sums of Factors |
| :---: | :---: | :---: |
| -1 and -48 | $-1-48=-49$ |
| -2 and -24 | $-2-24=-26$ |
| -3 and -16 | $-3-16=-19$ |
| -4 and -12 | $-4-12=-16$ |
| -6 and -8 | $-6-8=-14$ |

Factor the expressions.

$$
x^{2}-4 x-45=(x+5)(x-9)
$$

Factors of 45	Sums of Factors
1 and -45	$1-45=-44$
3 and -15	$3-15=-12$
5 and -9	$5-9=-4$
-1 and 45	$-1+45=44$
-3 and 15	$-3+15=12$
-5 and 9	$-5+9=4$

Factor the expressions.

$$
x^{2}+25 x+24=(x+1)(x+2 y)
$$

Factors of 24	Sums of Factors
1 and 24	$1+24=25$
2 and 12	$2+12=14$
3 and 8	$3+8=11$
4 and 6	$4+6=10$

7
Solve the equation.
$x^{2}-28 x+27=0$

Factors of 27	Sums of Factors
-1 and -27	$-1-27=-28$
-3 and -9	$-3-9=-12$

选METHOD
Factor the equation.

$$
\Rightarrow(x-1)(x-27)=0
$$

Find the zeroes.

$$
\begin{array}{ll}
x-1=0 & x-27=0 \\
+1+1 \\
x=1 & \frac{+27+27}{x=27}
\end{array}
$$

The solutions to the equation are 1 and 27 .

Solve the equation.

Factors of 10	Sums of Factors
1 and -10	$1-10=-9$
2 and -5	$2-5=-3$
-1 and 10	$-1+10=9$
-2 and 5	$-2+5=3$

Factor the equation.

$$
(x+1)(x-10)=0
$$

Find the zeroes.

$$
\begin{array}{r}
x+1=0 \\
-1 \\
\hline x=-1
\end{array}
$$

$$
\begin{aligned}
& x-10=0 \\
& +10 \quad+10 \\
& \hline x=10
\end{aligned}
$$

The solutions to the equation are -1 and 10 .

Solve the equation.

Factors of 135	Sums of Factors
1 and -135	$1-135=-134$
3 and -45	$3-45=-42$
5 and -27	$5-27=-22$
9 and -15	$9-15=-6$
-1 and 135	$-1+135=134$
-3 and 45	$-3+45=42$
-5 and 27	$-5+27=22$
-9 and 15	$-9+15=6$

Factor the equation. $(x-5)(x+27)=0$
Find the zeroes.

$$
\begin{array}{ll}
x-5=0 & x+27=0 \\
+5+5 & \frac{-27-27}{x=5}
\end{array} \quad \begin{array}{ll}
x=-27
\end{array}
$$

The solutions to the equation are 5 and -27 .

10 Solve the equation.

$$
x^{2}-31 x=32
$$

$$
x^{2}-31 x-32=0
$$

Factors of 32	Sums of Factors
1 and -32	$1-32=-31$
2 and -16	$2-16=-14$
4 and -8	$4-8=-4$
-1 and 32	$-1+32=31$
-2 and 16	$-2+16=14$
-4 and 8	$-4+8=4$

The solutions to the equation are \square and 32

Drag and drop each pair of solutions next to the equation having those solutions.
11

$x^{2}-3 x-18=0$
$x^{2}+11 x+18=0$
$x^{2}+3 x-18=0$
$x^{2}-11 x+18=0$

12 Factor the quadratic by checking factor pairs.

$8 x^{2}+9 x+1$			
	Factors of a	Factors of c	Outer + Inner
	1 and 8	1 and 1	9
2 2 and 4	1 and 1	6	

$\left(x+\frac{1}{8}\right)(x+1)$
$(8 x+1)(x+1)$

13 Factor the quadratic by checking factor pairs.

14
Factor the quadratic by checking factor pairs.

$$
\begin{aligned}
& 4 x^{2}-7 x+3 \\
& 4 x^{2}-7 x+3=
\end{aligned}
$$

\square) \square)

$$
\begin{array}{r}
(x-1)\left(x-\frac{3}{4}\right) \\
(x-1)(4 x-3)
\end{array}
$$

15 Factor the quadratic by checking factor pairs. $3 x^{2}-4 x-7$

$$
3 x^{2}-4 x-7=(x+1)(3 x-7
$$

${ }^{16}$ Solve the following quadratic equation. $5 x^{2}+21 x+4=0$

17 Solve the following quadratic equation.

$$
\begin{aligned}
& 6 x^{2}+18 x-2=2 x-10 \\
& \begin{array}{l}
\left.\frac{-2 x+10}{\frac{6 x^{2}}{2}+\frac{16 x}{2}+\frac{8}{2}} \right\rvert\, \frac{-d x+10}{0} \\
3 x^{2}+8 x+4=0
\end{array} \\
& x=-\frac{2}{3} \\
& \text { or } \mathrm{x}=
\end{aligned}
$$

18 Solve the following quadratic equation. Simplify the fraction if necessary. $(8 x+4)(x+1)=12$

Solve the following quadratic equation.

$$
3(2 x-1)(2 x+3)=24 x
$$

$$
\begin{gathered}
3\left(4 x^{2}+4 x-3\right)=24 x \\
12 x^{2}+12 x-9=24 / x \\
-24 x \\
\hline \frac{124 x}{3}-\frac{12}{3} x-\frac{9}{3}=0
\end{gathered}
$$

smith Switch signs

Factor the perfect-square trinomial.

$$
2 y^{3}+12 y^{2}+18 y
$$

\square $2 y(y+3)^{2}$

$$
\begin{gathered}
2 y\left(y^{2}+6 y+9\right) \\
2 y(y+3)^{2}
\end{gathered}
$$

Factor the difference of squares.
21

$$
\begin{aligned}
& \overline{4 y}^{2} \overline{4 y^{2}} \\
= & 4 y^{2}\left(4 y^{2}-1\right) \\
= & 4 y^{2}(2 y+1)(2 y-1)
\end{aligned}
$$

22 Solve the following equation with special factors.

23 Factor the perfect-square trinomial.

Solve the following equation with special factors.

25

Solve the following equation with special factors.

