

Integrated Math 3

Course Standards

\& Resource Guide

Integrated Math 3

Quadratics, Polynomials and Other Functions

Unit 1: Solving Quadratics
Unit 2: Graphing Quadratics
Unit 3: Higher Order Polynomials
Unit 4: Rational Functions
Unit 5: Exploring Other Functions Mathematical Modeling

Unit 6: Inverse Functions
Unit 7: Arithmetic and Geometric Sequences
Unit 8: Modeling with Systems of Equations/Inequalities (see note in guide)
Unit 9: Applying Geometric Concepts in Modeling

Trigonometry

Unit 10: Right Triangle Trigonometry
Unit 11: Unit Circle
Unit 12: Graph and Model Sinusoids

Statistics

Unit 13: Independence and Conditional Probability
Unit 14: Understanding and Evaluating Random Processes in Experiments
Unit 15: Summarize, Represent, and Interpret Data

Quadratics, Polynomials, and Other Functions

UNIT 1: Solving Quadratics

(Some standards will come from Math 2 to supplement)

Priority standard

A.APR. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Supporting standards

A-SSE 3.a Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.)

Concept Development
Concept: zeros of a quadratic expression
Definition: The points where the graph of the quadratic equation crosses the x -axis.
Critical Attributes: Zeros, factor
Shared Attributes: factor .
Non-Critical Attributes:
Examples: $\mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$
Non-Examples:
Possible CFU Questions:Find the dimensions of a rectangle whose are is $2 x^{2}+9 x+10 \mathrm{ft}^{2}$.

Skill Development
Skill: Factor a quadratic expression and find the zeros
Procedural or Declarative: Procedural
Process, Procedure, Steps: Teach factoring as the undoing of binomial distribution.
Details:
Possible CFU' Questions: Explain how factoring is undoing a binomial distribution

examples:

Three forms of the quadratic function reveal different features of its graph.
Standard form: $f(x)=a x^{2}+b x+c$ reveals the y intercept, ($0, \mathrm{c}$).
Vertex form: $f(x)=a(x-h)^{2}+k$ reveals the vertex (h, k) and thus the maximum or minimum value of the function.
Factored form: $f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ reveals the x-intercepts $\left(x_{1}, 0\right)$ and $\left(\mathrm{X}_{2}, 0\right)$.
A.SSE. 1 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity

Concept Development	Polynomial Expressions
Concept:	A monomial or the sum of monomials
Definition:	exponent of each monomial must be a whole number
Critical Attributes:	a leading coefficient, a constant term, the degree of the polynomial
Shared Attributes:	$4 x^{2}+2 x-8,10 x^{5},-3$
the number of monomials	
Examples:	$x^{\frac{2}{3}, 2^{x}, \frac{1}{2}-1}, 0 x$
Non-Examples: Attributes:	http://ccssmath.org/?page_id=2085
purplemath, mathisfun,	
algebralab.org, regentsprep.org,	
ccss.org, illustrativemathematics.org	

Skill Development	explain (declarative): coefficient, variable, constant, exponent, degree of polynomial, polynomial type
What do I teach?:	Declarative
How do I teach?:	Given various polynomials, have students identify and/or find terms and factors
CFU Questions:	Given that the volume of a box is $x^{3}+4 x^{2}+5 x+2$ with at height $\mathrm{x}+1$, what are the other dimensions.

A.APR. 3 (part 1)

Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function

 defined by the polynomial.| Concept Development | | Skill Development | |
| :---: | :---: | :---: | :---: |
| Concept: | Identifying the real zeros of a (quadratic) polynomial function (note: sketching rough graph will be done in Unit 2, Part 2) | Skill: | Identifying the zeros of a polynomial. |
| Definition: | Values of x that make a polynomial function equal to zero. | What do I teach?: | Procedural |
| Critical Attributes: | if $f(x)=0$, then x is a real zero for the polynomial | How do I teach?: | In factored form, we set each factor equal to zero |
| Shared Attributes: | one or more zeros may exist | | |
| Non-Critical Attributes: | solutions that are imaginary may exist but are not used at this point | CFU Questions | Sketch a graph of $f(x)=(x-2)(x+3)(x+1)$ and identify roots. Identify the factors of a graphed polynomial.\| |
| Examples: | $\begin{aligned} & x^{2}-8 x+12=0, x=2, x=6 \\ & n^{2}-6 n=0, n=0, n=6 \\ & 24 x^{2}+8 x+2=5-6 x, x=\frac{1}{6}, x=-\frac{3}{4} \end{aligned}$ | | |
| Non-Examples: | anything that finds zeros incorrectly; for example $(x+2)(x-1)=4, x=2, x=5$ | | |

N.CN. 9 (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials (quadratics only)

Concept Development	
Concept:	Fundamental Theorem of Algebra (FTA) and its Corollary
Definition:	If $f(x)$ is a polynomial of degree $n(n>0)$ then $f(x)=0$ has at least one solution in the set of complex numbers. Corollary: number of solutions equals the degree, n.
Critical Attributes:	The degree of polynomial will match the number of linear factors.
Shared Attributes:	Find all zeros of polynomials from linear factorization
Non-Critical Attributes:	Some solutions could be real or imaginary. or a combination of both.
Examples:	How many solutions does the equation $x^{3}+5 x^{2}+4 x+20=0$ have? Justify your answer.
Non-Examples:	You can't use FTA to find solutions to non-polynomials, like $x^{\frac{1}{2}}-2^{x}=0$.
Resources:	http://ccssmath.org/?page_id=2046 Alg 2 text section 5.7 p 379-386

Skill Development	
Skill:	Show that the FTA is true for quadratic equations. Find all solutions (zeros) for higher order equations.
What do I teach?:	Procedural
How do I teach?:	Factor polynomial to product of prime binomials/trinomials and use Zero Product Property
	Use the Fundamental Theorem of Algebra to help identify the roots of the polynomials: $x^{3}-2 x^{2}+4 x-8$ $x^{3}+x^{2}-x-1$ $x^{4}+x^{3}+4 x^{2}-4 x$
CFU Questions:	

Examples:

- How many zeros does $-2 x^{2}+3 x-8$ have? Find all the zeros and explain, orally or in written format, your answer in terms of the Fundamental Theorem of Algebra.

A-REI 4. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a \pm bi for real numbers a and b

Concept Development
Concept: quadratic equation
Definition: an equation that can be written in the form of $\mathrm{f}(\mathrm{x})=\mathrm{ax} \mathrm{x}^{2}+\mathrm{bx}+\mathrm{c}$ where $\mathrm{a}, \mathrm{c}, \mathrm{b}$ are real numbers and a can not be zero:
Critical Attributes: solving the quadratic equation with different methods and discriminant
Shared Attributes: factoring,
Non-Critical Attributes:
Examples: $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}+4 \mathrm{x}+8$
Non-Examples: $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+4$
Possible CFU Questions: Explain how you solved the quadratic equation.

Skill Development

Skill: Students solve and explain why they choose the method
Procedural or Declarative: procedural and declarative
Process, Procedure, Steps: Given several quadratic equation students should be able to identify and use the best method to solve the equation.
Discriminant: Use $b^{2}-4 a c$ to determine how many solutions and what type of solutions a quadratic equation will have.|

Details:

Possible CFU' Questions: Explain why you chose a particular method (factoring, completing the square, quadratic formula) to solve a quadratic equation.

Students may solve by factoring, completing the square, and using the quadratic formula. The zero product property is used to explain why the factors are set equal to zero. Students should relate the value of the discriminant to the type of root to expect. A natural extension would be to relate the type of solutions to $a x^{2}+b x+c=0$ to the behavior of the graph of $y=a x^{2}+b x+c$.

Value of Discriminant	Nature of Roots	Nature of Graph
$\mathrm{b}^{2}-4 \mathrm{ac}=0$	One real root	One x-intercept
$\mathrm{b}^{2}-4 \mathrm{ac}>0$	Two real roots	Two x-intercepts
$\mathrm{b}^{2}-4 \mathrm{ac}<0$	No real root	Does not intersect x-axis

A-APR 1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials

Concept Development
Concept: polynomials
Definition: A monomial or a sum or difference of monomials
Critical Attributes: monomials, binomials, trinomials
Shared Attributes: sum, difference, product
Non-Critical Attributes: standard form
Examples: $3 x, 4 x-5, x^{2}+5 x+6$
Non-Examples: $3 / x, x^{(-2)}$
Possible CFU Questions: Explain why polynomial. Create a 3-term polynomial expression..

Skill Development

Skill: "Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication."

Procedural or Declarative: Declarative
Process, Procedure, Steps: n/a
Details:
Possible CFU' Questions: Is the sum (difference or product) of $3 x+4$ and $5 x+6$ a polynomial?
N.CN. 7 Solve quadratic equations with real coefficients that have complex solutions.

Concept Development
Concept: Complex solution
Definition: any number that can be written in the form $\mathrm{a}+\mathrm{bi}$ with a and b are real. Critical Attributes: form $\mathrm{a}+$ bi with a and b are real. Shared Attributes: Non-Critical Attributes: Examples: $3 \mathrm{x}^{2}+4 \mathrm{x}+7=0$ Non-Examples: $\mathrm{x}^{2}+4 \mathrm{x}+4$ Possible CFU Questions: Explain how do you know the solution to the quadratic equation is complex? l

N.CN. 1 Know there is a complex number i such that $i^{2}=\sqrt{ }-1$, and every complex number has the form $a+b i$ with a and b, real.
N.CN. 2 Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers

Concept Development
Concept: complex number
Definition: any number that can be written in the form $\mathrm{a}+\mathrm{bi}$ with a and b are real.
Critical Attributes: $\mathrm{i}=\sqrt{-1}$ or $\mathrm{i}^{\wedge} 2=-1, \mathrm{a}+\mathrm{bi}$
Shared Attributes: solutions to a quadratic function, real part, imaginary part
Non-Critical Attributes: a and b real numbers
Examples: $3+2 \mathrm{i}, 0+4 i, 2+0 \mathrm{i}$
Non-Examples: $54 \mathrm{4i}$
Possible CFU Questions: Explain what a complex number is.
Resources: http ://ccssmath.org/?page_id=2030
Example: - Simplify the following expression. Justify each step using the commutative, associative and distributive properties. (3-2i)(-7+4i) Solutions may vary; one solution follows: $\begin{array}{lc} (3-2 i)(-7+4 i) & \\ 3(-7+4 i)-2 i(-7+4 i) & \text { Distributive Property } \\ -21+12 i+14 i-8 i^{2} & \text { Distributive Property } \\ -21+(12 i+14 i)-8 i^{2} \text { Associative Property } \\ -21+i(12+14)-8 i^{2} & \text { Distributive Property } \\ -21+26 i-8 i^{2} & \text { Computation } \\ -21+26 i-8(-1) & i^{2}=-1 \\ -21+26 i+8 & \text { Computation } \\ -21+8+26 i & \text { Commutative Property } \\ -13+26 i & \text { Computation } \end{array}$

Skill Development
Skill: Know there is a complex number i. Know every complex number has the form a+bi, with a and b representing real numbers.
Procedural or Declarative: Declarative
Process, Procedure, Steps:
Details:
Problem 1. $\sqrt{-36}$ 2. Possible CFU' Questions: Simplify:

A.CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.

Concept Development	
Concept:	Writing equations/inequalities in one variable with modeling.
Definition:	An equation/inequality in one variable.
Critical Attributes:	one variable
Shared Attributes:	the same variable can appear in different equations
Non-Critical Attributes:	the actual variable chosen to represent a quantity
Express the area of a rectangle using variable	
expressions to represent the lengths of the sides	
resulting in a quadratic equation.	

Skill Development	
Skill:	writing an equation to represent a situation involving unknown quantities (using variables)
What do I teach?:	declarative (\& procedural for specific cases/ examples)
How do I teach?:	determine unknown variables, state whether or how they are related to one another including constants when appropriate,
CFU Questions:	Math Performance Task: "Parking Lot"

Examples:

- Given that the following trapezoid has area $54 \mathrm{~cm}^{2}$, set up an equation to find the length of the base, and solve the equation.
Lava coming from the eruption of a volcano follows a parabolic path. The height h in feet of a piece of lava t seconds after it is ejected from the volcano is given by $h(t)=-t^{2}+16 t+936$. After how many seconds does the lava reach its maximum height of 1000 feet?

A.CED. 3 (Unit 15) (Unit 6)

Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

Concept Development		Skill Developm	
Concept:	Interpret solutions as viable or nonviable options in a modeling context.	Skill:	Interpreting the constraint in the context of the model
Definition:	Constraints are Domain or Range restrictions to solutions.	What do I teach?:	Procedural
Critical Attributes:	The model has at least one constraint.	How do I teach?:	Once the expression is determined that represents the model, identify any constraints that exist.
Shared Attributes:	Linear Programming: Feasible Region, Critical Points.	CFU Questions:	The number of individuals infected by a virus can be
Non-Critical Attributes:	The number of constraints; the set of values of the constraint(s).		
Examples:	See Resources		
Non-Examples:	All solutions are possible		
Resources:	Alg 2 textbook sect 2.8 p 132-137, section 2.3 p94, 95. Linear Programming on p 174-176.		

Integrated Math 3 Course Standard and Resource Guide

Quadratics, Polynomials, and Other Functions

UNIT 2 : Graphing Quadratics

Overview \quad Solve quadratic functions in various forms

Priority standard

A. APR. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Students will be able to use the zeros to construct a rough graph of the function defined by the polynomial.

Concept Development		Skill Developme	
Concept:	Graphing Quadratics	Skill:	factor, $f(x)=0$, identify and plot zeros on y -axis from equation
	the set of all points whose coordinates are$(x, f(x))$		
Definition:		What do I teach?:	Procedural
Critical Attributes:	Rough sketch of parabola has two zeros	How do I teach?:	factor by grouping, factor binomials, factor out gcf, identify how many zeros
Shared Attributes:	two zeros can be identical		
Non-Critical Attributes:	Additional points, vertex coordinates	CFU Questions:	Sketch a graph of $f(x)=x^{2}+5 x-36$ and identify roots. Identify the factors of a graphed polynomial.
Examples:	Sketch the following functions: $\begin{aligned} & f(x)=(x+3)(x-3) \\ & f(x)=3 x^{2}-6 x+4 \end{aligned}$		
Non-Examples:	using too few or too many points		
Resources:	http://ccssmath.org/?page_id=2107		

Supporting standards

F.IF. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

Concept Development
Concept: graph of a quadratic function
Definition: the collection of all ordered pairs $(x, f(x))$ in a plane
Critical Attributes: vertex, intercepts, relative maximums and minimums
Shared Attributes: intercepts
Non-Critical Attributes:
Examples: $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\wedge} 2+2 \mathrm{x}+3$
Non-Examples:
Possible CFU Questions: What are the intercepts and vertex of the following quadratic (graph, table, verbal descriptions)

Skill Development

Skill: interpret key features of graphs and tables in terms of the quantities

Procedural or Declarative: Declarative
Process, Procedure, Steps:
Details: Can use graphing calculators to show key features
Possible CFU' Questions: (Verbal description) A balloon rises to a height of 20 feet. After 40 minutes, the balloon is back on the ground. What are the intercepts? What is the vertex?

F.IF.7a (part 1 and part 2 below)

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
a. Graph linear and quadratic functions and show intercepts, maxima, and minima."
c) Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

Concept Development		Skill Development	
Concept:	Graphing (Quadratics)	Skill:	Find vertex, axis of symmetry, max, min, zeros
Definition:	the set of all points whose coordinates are ($\mathrm{x}, \mathrm{f}(\mathrm{x})$)	What do I teach?:	Procedural
			Find the vertex(vertices), identify axis of
Critical Attributes:	Sketch of parabola has a vertex and two critical points	How do I teach?:	symmetry, find the zeros
Shared Attributes:	Critical points are zeros. Symmetry about axis of symmetry (one side could be y-intercept, for example)	CFU Questions:	Graph the function: $f(x)=2 x^{2}+7 x+3$ Identify key features: vertex, y-intercept, x-intercepts, line of symmetry, and end behavior.
Non-Critical Attributes:	Additional points		
	Given: $y=-(1 / 2)(x+2)(x-2)$, sketch the graph.		

F.IF. 8

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
(Math 2 standard)
F.IF.8.a

Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

Concept Development	
Concept:	Equivalent forms of functions
Definition:	functions that have the same solution set
Critical Attributes:	Must be equivalent for all values of x.
Shared Attributes:	Zeros, extreme values, end behavior. Equivalence.
Non-Critical Attributes:	values of maxima/minima change from function to function...
Examples:	Find the x-intercepts of $f(x)=-3(x-2)^{2}+3$
	Find the x-intercepts of $f(x)=(x+2)(x-5)$
Non-Examples:	
Resources:	http://www.illustrativemathematics.org/illustrations/640

Skill Development	
Skill:	Complete the square. Completely factor.
What do I teach?:	Procedural
How do I teach?:	Std to Vertex: use completing the square Vertex to Std: distribute and combine like terms
	Change the following function from standard form to vertex form.
"in context" example: Suppose $h(t)=-5 t^{2}+10 t+3$ is an expression giving the height of a diver above the water (in meters), t seconds after the diver leaves the springboard.	
CFU Questions:	How high above the water is the springboard? Explain how you know. When does the diver hit the water? At what time on the diver's descent toward the water is the diver again at the same height as the springboard? When does the diver reach the peak of the dive?

F.IF. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

F.IF. 5

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

Concept Development
Concept: domain
Definition: the set of "input" or argument values for which the function is defined
Critical Attributes: the set of "input"
Shared Attributes:
Non-Critical Attributes:
Examples: Domain for a maximum area function is always positive
Non-Examples:
Possible CFU Questions: Using real world applications explain why or why not the domain of this function_ makes sense?

Skill Development

Skill: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes

Procedural or Declarative: procedural
Process, Procedure, Steps: Use different type of graphs to represent real world applications.

Details:
Possible CFU' Questions: Identify the domain of the graph

F.BF. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Concept Development					
Concept:	Transformations of parabolas.				
	the operation of changing (as by rotation or mapping) one configuration or expression into another in accordance with a mathematical rule; especially : a change of variables or coordinates in which a function of new variables or coordinates is substituted for each original variable or coordinate				
Definition:	type of function stays same (quadratic, etc)	$	$	Critical Attributes:	location of k always has same transformation effect on ANY kind of function (exponential, absolute value,...)
:---	:---				
Shared Attributes:	$\mathrm{f}(\mathrm{x})$ could be $\mathrm{g}(\mathrm{x})$ or $\mathbf{y} \ldots$				
Non-Critical Attributes:	Use the equation to answer the question $y=f(x+A)+B$				
Describe how each parameter (A and B) affects the graph of the					
function $y=x^{2}$. Include specific information about how positive					
and negative values affect the graph for each parameter in your					
answer.					

Skill Development	
Skill:	Graph quadratic functions in standard form, intercept form, and vertex form
What do I teach?:	Declarative
How do I teach?:	Use technology to produce a variety of graphs to investigate the effects of k on the functions and have students find patterns that can be generalized to describe transformations of functions.
CFU Questions:	Describe the graphical differences between the two functions. $\mathrm{f}(\mathrm{x})=2(\mathrm{x}+3)+1$ and $\mathrm{g}(\mathrm{x})=5(\mathrm{x}-1)+2$

Integrated Math 3 Course Standard and Resource Guide

Quadratics, Polynomials, and Other Functions

UNIT 3 : Higher Order Polynomials

Overview

Priority standard

A. APR. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Supporting standards

A.APR. 5

$(+)$ Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.

Concept Development	
Concept:	Binomial Theorem and Pascal's Triangle
Definition:	see Alg 2 Text section 10.2, p 693
	The numbers in the $n^{\text {th }}$ row of the Pascal's Triangle are the coefficients of the Binomial Expansion of $(x+y)^{n}$. The number of terms is always one more than the degree of the binomial.
Critical Attributes:	terms, binomial
Shared Attributes:	Since the 4 th row of Pascal's Triangle is $1,4,6,4,1$, then we can QUICKLY write: $(a+b)^{4}=1 a^{4} b^{0}+4 a^{3} b^{1}+6 a^{2} b^{2}+4 a^{1} b^{3}+1 a^{0} b^{4}$
Non-Critical Attributes:	You cannot use this theorem on trinomials such as $(x+y+4)^{4}$, it only works on Binomials
Examples:	See Alg 2 text section 5.4 p 354, Pascal's Triangle to get $(a+b)^{n}$ section 10.2 p 693
Non-Examples:	
Resources:	

Skill Development	
Skill:	Expanding binomials $(x+y)^{n}$
What do I teach?:	Binomial Theorem and Pascal's triangle
	Emphasize importance of raising each term to the appropriate power, as in $\left(2 x^{2}-3\right)^{4}$, students often forget to raise the $2 x^{2}$ to the correct power, and make errors with the negative sign raised to odd/even powers.
How do I teach?:	Expand $(x+2)^{5}$ Explain how to use the Pascal's Triangle in expanding $(x+2)^{5}$ versus $(3 x+2)^{5}$.
CFU Questions:	

A.APR. 1

Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Concept Development	
Concept:	Operations of Addition, Subtraction, Multiplication on Polynomials. "Closure" applies.
Definition:	Closure: Like terms! when you add, subtract, or multiply polynomials, you get another polynomial.
Critical Attributes:	Combining "like terms," using distributive property.
Shared Attributes:	Other functions, such as radicals, can also have like terms. $x^{1 / 2}+x^{1 / 2}$
Non-Critical Attributes:	Order in which you list terms (ascending, descending...)
	$x^{2}+4 x^{2}=$
$\left(4 x^{2}+5 x+6\right)\left(3 x^{2}+5 x\right)(3 x+2)=$	
Examples:	$x^{2}+y^{2}$ are not like terms $\left(x^{3}\right)\left(x^{3}\right)$ is NOT
	$x^{9},(x+3)(x+3)$ is not $x^{2}+9$

Skill Development	
Skill:	Add, subtract, multiply polynomials.
What do I teach?:	Declarative and Procedural
How do I teach?:	Identify and combine like terms.
	$\left.\begin{array}{l}\text { 1. Simplify: } \\ \left(x^{3}+5 x^{2}+3 x-2\right)+\left(x^{4}-3 x^{3}+7 x-1\right) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \text { CFU Questions: } \\ \\ \hline\end{array} x^{3}+5 x^{2}+3 x-2\right)-\left(x^{4}-3 x^{2}+3 x-2\right)\left(x^{4}-3 x^{3}+7 x-1\right)$
2. When you subtract two polynomials, you	
(sometimes, always, never) get another	
polynomial.	
3. Circle all of the following operations that are	
closed operations on the set of polynomials:	
addition, subtraction, multiplication, division of	
polynomials.	

```
A.APR. 2
Know and apply the Remainder Theorem: For a polynomial \(p(x)\) and a number \(a\), the remainder on division by \(x-a\) is \(p(a)\), so \(p(a)=0\) if and only if \((x-a)\) is a factor of \(p(x)\).
```


A.APR. 3

Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Concept Development		Skill Developm	
Concept:	Division of polynomials gives us a tool for finding roots, and vice versa.	Skill:	Plot rough graph.
		What do I teach?:	Procedural
Definition:	Each factor gives us an x-intercept, when set equal to zero.	How do I teach?:	Plot all roots on x axis, picture end behavior, deal with multiple roots of odd degree crossing axis and even degree returning in same direction. (We do not care about actual values of y at relative $\mathrm{min} / \mathrm{max}$).
Critical Attributes:	if $f(x)=0$, then x is a real zero for the polynomial		
Shared Attributes:	one or more zeros may exist	CFU Questions:	1. Sketch a graph of $f(x)=(x-2)(x+3)(x+1)$ and identify roots. 2. Identify the factors of a graphed polynomial.\|
Non-Critical Attributes:	solutions that are imaginary may exist but are not used at this point		
Examples:	Sketch: $f(x)=(x+5)(x-1)(x-3)$. Zeros are at $\mathbf{x}=-5,+1,+3$, with function going up on right, down on left end. Sketch: $f(x)=-(x+2)^{3}(x-3)$. Zeros are at $\mathbf{x}=-2,+3$, with function going down on right, up on left end. Function goes through the x axis at triple root $\mathrm{x}=-2$.		
Non-Examples:	If $(x-2)(x+3)=5$, zeros are not $x=2$ and $x=-3$. (The right side of the equation MUST be zero!)		
Resources:	Alg 2 text section 5.4 p 353-359, section 5.7 p 379-386, section 5.8 p 387-392, and PreCalc text for end-behavior, multiple roots, etc. http://ccssmath.org/?page_id=2107		

A.APR. 6

Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$,and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.

Concept Development	
	"Equivalent Expressions" is the general concept. This is a specific set of cases which is re-writing rational expressions using division or factoring to find quotient and remainder.
Concept:	(See objective \& standard above.)
Definition:	quotient, divisor, remainder (which might include $\mathrm{r}(\mathrm{x})=0$)
Critical Attributes:	divisor is always the denominator of the remainder.
Shared Attributes:	remainder could be zero
Non-Critical Attributes:	Rewrite $\frac{x^{2}+2 x-4}{x-2}$ Solution by inspection: $x+4+\frac{4}{x-2}$
Examples:	$\frac{2 x-4}{x^{2}-2}$
Non-Examples:	Alg 2 Textbook section $5.5 p 362-368$ http://ccssmath.org/?page id=2113
Resources:	

Skill Development	
Skill:	Factoring and simplifying rational expressions and long division of polynomials.
What do I teach?:	Procedural
How do I teach?:	When given a rational expression, you can simplify it by using long (or synthetic division), where the denominator becomes the divisor. Any remainder is written as the numerator over the divisor.
CFU Questions:	Divide: $\frac{4 x^{3}+x^{2}-3 x+7}{x-1}$. To solve it, rewrite as:
$x-1 \overline{4 x^{3}+x^{2}-3 x+7=4 x^{2}+5 x+2+\frac{9}{x-1}}$	

N.CN. 8

(+) Extend polynomial identities to the complex numbers.

Concept Development		Skill Development	
Concept:	Completely factoring polynomials to include imaginary roots.	Skill:	Factor Polynomial
		What do I teach?:	Procedural
Definition:	Complete linear factorization: in every factor, x has degree of one.	How do I teach?:	Polynomials need to be factored completely include imaginary roots
Critical Attributes:	Imaginary/Complex factors always occur in conjugate pairs, ex: ($\mathrm{x}+\mathrm{i} \mathrm{i})(\mathrm{x}-\mathrm{i} \mathrm{i})$.	CFU Questions:	Determine linear factors of $x^{2}+16$ over the complex number system.
Shared Attributes:	Real-factored polynomials.		
Non-Critical Attributes:	Greatest Common Factor		
Examples:	$x^{3}+5 x^{2}+8 x+3=(x+3)(x-(-1+i)(x-(-1-i))$		
Non-Examples:	$x^{2}+4$ is not a linear factor, $(x+2 i)(x-2 i)$ is completely factored.		
Resources:	(fyi: from Pre-Calc text, not in Alg 2 text). See framework. http://ccssmath .org/?page id=2103,		

N.CN. 9

(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

Concept Development	
Concept:	Fundamental Theorem of Algebra (FTA) and its Corollary
	lf $f(x)$ is a polynomial of degree $n(n>0)$ then $f(x)=0$ has at least one solution in the set of complex numbers. Corollary: number of solutions equals the degree, n.
Definition:	The degree of polynomial will match the number of linear factors.
Critical Attributes:	Find all zeros of polynomials from linear factorization
Shared Attributes:	Some solutions could be real or imaginary. or a combination of both.
Non-Critical Attributes:	How many solutions does the equation $x^{3}+5 x^{2}+4 x+20=0$ have? Justify your answer.
Examples:	You can't use FTA to find solutions to non-polynomials, like $x^{\frac{1}{2}}-2^{x}=0$.
Non-Examples:	http://ccssmath.org/?page_id=2046 Alg 2 text section $5.7 p 379-386$
Resources:	

Skill Development	
Skill:	Show that the FTA is true for quadratic equations. Find all solutions (zeros) for higher order equations.
What do I teach?:	Procedural
How do I teach?:	Factor polynomial to product of prime binomials/trinomials and use Zero Product Property
CFU Questions:	Use the Fundamental Theorem of Algebra to help identify the roots of the polynomials: $x^{3}-2 x^{2}+4 x-8$ $x^{3}+x^{2}-x-1$ $x^{4}+x^{3}+4 x^{2}-4 x$

A.SSE. 2

Use the structure of an expression to identify ways to rewrite it.

Concept Development		Skill Development	
Concept:	Structure of Expressions	Skill:	Completely factor polynomials.
	Writing equivalent expressions, specifically	What do I teach?:	Procedural
Definition:	previously-learned techniques.	How do I teach?:	rewrite polynomials as product of prime factors
Critical Attributes:	Must be same as the original expression.	CFU Questions:	Factor: $x^{4}+4 x^{2}+3$ Extension/Challenge question: Ciera says that factoring $5^{2 x}+4\left(5^{x}\right)+3$ is really easy. Show and explain what she knows. Solution: rewrite $\left(5^{x}\right)^{2}+4\left(5^{x}\right)+3$ and let $u=5^{x}$ then $u^{2}+4 u+3 \ldots$
Shared Attributes:	Factor		
Non-Critical Attributes:	Type of Polynomial		
Examples:	$\begin{aligned} & x^{4}-y^{4}=\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2} \\ & x^{2}-5=(x-\sqrt{5})(x+\sqrt{5}) \end{aligned}$		
Non-Examples:	$u^{2}+4 u+3$		
Resources:	http://ccssmath.org/?page_id=2091 Alg 2 text, section 5.7. Also see PreCalculus text.		

Integrated Math 3 Course Standard and Resource Guide

Quadratics, Polynomials, and Other Functions

UNIT 4 : Rational

Overview \quad Solving and graphing rational functions

Priority standard

F.IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases

- (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

Concept Development		Skill Development	
Concept:	Rational Functions (graphing)		Locate key features of rational functions and graph them.
Definition:	A function of form $f(x)=\frac{p(x)}{q(x)}$ where p and q are polynomials, and $q(x)$ is not equal to zero.	What do I teach?:	Declarative (follow short procedures to describe graphs)
Critical Attributes:	Location of vertical and horizontal asymptotes.		Ind vertical asymptotes (set factors in denominat
Shared Attributes:	Vertical and horizontal translations of parent function $f(x)=\frac{1}{x}$, such as $y=\frac{1}{(x+4)}$ is translated left 4 units.	How do I teach?:	equal to zero), Find horizontal asymptotes by comparing degree of numerator and denominator.
Non-Critical Attributes:	Negative or positive numerator	CFU Questions:	Does this function have horizontal asymptotes: $f(x)=\frac{\left(x^{2}-2 x-15\right)}{\left(x^{2}-9\right)} ?$ How do you know? Does the function have a vertical asymptote at $x=-3$? Explain.
Examples:	Graph $y=\frac{x-2}{x+3}$ and identify vertical and horizontal asymptotes and any zeros. Explain end behavior.		
Non-Examples:	Graph $y=\sqrt{x-2}$ (this is not a rational function)		
Resources:	http://ccssmath.org/?page id=2173 Alg 2 text sections 8.2, 8.3		

Supporting standards

F.BF. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Concept Development	
Concept:	Transformations of rational functions.
Definition:	transformations include translations (vertical/horizontal shifts), stretching
Critical Attributes:	has a numerator and a denominator.
Shared Attributes:	location of k always has same transformation effect on ANY kind of function (exponential, absolute value, ...)
Non-Critical Attributes:	$\mathrm{f}(\mathrm{x})$ could be $\mathrm{g}(\mathrm{x})$ or $\mathrm{y} \ldots$
Examples:	$y=\frac{1}{(x+3)}-4$ is $y=\frac{1}{x}$ shifted 3 left (horizontal shift) and down 4 (vertical shift).
Non-Examples:	if $\mathrm{k}=1$ or zero: $y=\frac{1}{(x+0)}$ has no transformation
Resources:	http://ccssmath.org/?page id=2195 Alg 2 text $8.2,8.3$

Skill Development	
Skill:	Graphing using transformations and identifying the transformation by comparing two graphs.
What do I teach?:	Procedural (graphing) and Declarative (describing)
How do I teach?:	Beginning with the parent function, graph the new function based on the transformation and state what the transformation is given two graphs.
CFU Questions:	1.Sketch $y=\frac{1}{(x-3)}$ 2. Coscribe the transformation.

A.APR. 7
 (+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions

Concept Development	
Concept:	Operations of Addition, Subtraction, Multiplication, Division on Rational expressions. "Closure" applies when denominator is nonzero.
Definition:	Closure: when you add, subtract, or multiply, divide rational expressions, you get another rational expression.
Critical Attributes:	Use same properties as fractions.\|
Shared Attributes:	Other functions, such as radicals, can also have like terms. $\quad x^{\frac{1}{2}}+x^{\frac{1}{2}}$
Non-Critical Attributes:	Negative or positive numerator
Examples:	$\begin{aligned} & \frac{1}{x}+\frac{3}{(2-x)}=-? \quad \frac{1}{x}-\frac{3}{(2-x)}=-? \\ & \frac{x^{2} y^{3}}{4 x^{8} y^{2}}=-? \quad \frac{x^{2}-4}{x^{2}+4 x+4}=-? \end{aligned}$
Non-Examples:	$\begin{aligned} & x^{2}+y^{2} \text { are not like terms, } \\ & \left(x^{3}\right)\left(x^{3}\right) \text { is NOT } x^{9} \\ & (\mathbf{x}+3)(\mathbf{x}+3) \text { is not } x^{2}+9 \end{aligned}$
Resources:	http://ccssmath.org/?page id=2115 See Alg 2 Text sections 8.4, 8.5

Skill Development	
Skill:	Add, subtract, multiply divide rational expressions.
What do I teach?:	Procedural
How do I teach?:	Compare to operations with regular fractions. $1 . \frac{x+1}{x^{2}+4 x+4}-\frac{6}{x^{2}-4}$
CFU Questions:	$2 . \frac{6 x^{2}+x-15}{4 x^{2}}+\frac{2 x+5}{2 x}$

A.REI. 2

Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Concept Development		Skill Development	
Concept:	Extraneous solutions	Skill:	Solve rational equations.
	A solution that emerges from the process of solving	What do I teach?	Procedural
Definition:	problem.		Techniques depend on problem. Least Common
Critical Attributes:	Solution that results in denominator equal to zero	How do I teach?:	need to be aware of extraneous solutions.
Shared Attributes:		CFU Questions:	Alg 2, Example 6 on pg. 592
Non-Critical Attributes:	You might have zero, one, or many solutions.		
Examples:	Solve $\frac{6}{(x-3)}=\frac{8 x^{2}}{\left(x^{2}-9\right)}-\frac{4 x}{(x+3)}$ and identify all solutions including extraneous solutions if any and explain. Ans : $x=\frac{3}{2}$ is solution, $x=-3$ is extraneous. (see p 591)		
Non-Examples:	$\frac{x-4}{5}+\frac{x-3}{6}=1, \mathrm{x}=4$ and $\mathrm{x}=3$ are not solutions.		
Resources:	http://ccssmath.org/?page id $=2127$ See Alg 2 text section 8.6 p 589		

F.IF. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

(Include rational, square root, cube root; emphasize selection of appropriate models)

Concept Development	Finding key features of models of relationships.
Concept:	A function is a relationship between a set of INPUTS and a set of permissible OUTPUTS with the property that each input is related to exactly ONE output.
Definition:	Two quantities, like time and value or time and population growth
Critical Attributes:	Every function can be represented in four ways: algebraically, graphically, numerically (data tables). and verbally.
Shared Attributes:	Type of function (polynomial, exponential, etc.)
Non-Critical Attributes:	(See influenza epidemic example in resources below.)
Examples:	http://www.illustrativemathematics.org/standard s/hs
Non-Examples:	Alg 2 textbook section 6.3, 6.4, 7.1, 7.2 http://ccssmath.org/?page_id=2159
Resources:	

Skill Development	
Skill:	Interpret key features from tables and graphs, and graph from verbal descriptions
What do I teach?:	Declarative: Key features may include\| intercepts, intervals where function is increasing/decreasing, positive or negative, relative $\mathrm{min} / \mathrm{max}$ values, symmetries, end behavior, periodicity,
How do I teach?:	Have students label independent and dependent variables on axis, plot points, interpret information from graphs, write summaries of data
CFU Questions:	The function $C(t)=\frac{5 t}{0.01 t^{2}+3.3}$ describes the concentration of a drug in the bloodstream over time. Graph the function. identify and interpret the intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior.

Integrated Math 3 Course Standard and Resource Guide

Quadratics, Polynomials, and Other Functions

UNIT 5 : Exploring other functions

Overview Solving radical equations, graph parent functions with transformations, and solve system of equations

Priority standard

A.REI. 2

Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

- radical

Concept Development	
Concept:	Extraneous solutions
Definition:	A solution that emerges from the process of solving the problem but is not a valid solution to the original problem.
Critical Attributes:	Radicals with even roots (fraction exponents with even denominators) have domain limitations (radicand must be non-negative).
Shared Attributes:	
Non-Critical Attributes:	You might have zero, one, or many solutions.
Examples:	p 454 Ex 5 Solve: $x+1=(7 x+15)^{\frac{1}{2}}$.- has one extraneous solution. p 457 \#44. Explain how you can tell that $(x+4)^{\frac{1}{2}}=-5$ has no solutions. p 454 Ex 4 Solve $(x+2)^{\frac{3}{4}}-1=7$.
Non-Examples:	See p 456 \#32, \#33
Resources:	http://ccssmath.org/?page id=2127 See Alg 2 text section 6.6 p 452

F.IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology

 for more complicated cases.- Graph \qquad square root cube root piecewise-defined functions \{maybe including step functions?\} absolute value functions.

Concept Development					
Concept:	Rough sketch (of various non-linear functions)				
Definition:	Rough sketch is a drawing that shows the main features of a graph				
Critical Attributes:	Critical points				
Shared Attributes:	Critical points could be zeros; Symmetry about axis of symmetry (one side could be y-intercept, for example)				
Non-Critical Attributes:	$y=\|x\|, g(x)=x^{\frac{1}{2}}, f(x)=x^{\frac{1}{3}}, \quad \mathrm{~h}(\mathrm{x})=$ int(x)	$	$	Examples:	It is not necessary to plot several points once the general behavior of the graph is determined.
:---	:---				
Non-Examples:	http://ccssmath.org/?page id=2165 pt23 Section $2.7, \mathrm{p} 446$ section 6.5, see pre Calc book for integer and step functions				
Resources:					

Skill Development	
Skill:	Graphing the remaining non-linear functions
What do I teach?:	Procedural (plotting points, rough sketch) and Declarative (recognizing and describing the transformation)
How do I teach?:	Parent functions and basic transformations (with or without calculators at this time).
CFU Questions:	Graph the function and identify key features: $g(x)=\|x+3\|-2$ compare and contrast the graphs of $h(x)=-x^{1 / 3}$ $f(x)=x^{1 / 3}$

F.BF. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Concept Development	
Concept:	Transformations of remaining non-linear functions.
Definition:	transformations include translations (vertical/horizontal shifts) and dilations (stretching)
Critical Attributes:	recognizing parent function shapes of new functions: square root, cube root, abs value, piece-wise.
Shared Attributes:	location of k always has same transformation effect on ANY kind of function (exponential, quadratic value,...)
Non-Critical Attributes:	
Examples:	$\begin{aligned} & y=3\|x+1\|-5 \\ & g(x)=-2(x-2) \\ & f(x)=(x+2) \\ & h(x)=[[x-2]] \\ & \mathrm{h}(\mathbf{x})=\operatorname{int}(\mathbf{x}-2) \end{aligned}$
Non-Examples:	1. Given $f(x)+k$ and $f(x+k)$, if $k=0$, then no transformation exists. 2. Given $k f(x)$ and $f(k x)$, if $k=1$, then no transformation exists.
Resources:	p123 Section 2.7, p 446 section 6.5, see pre Calc book for integer and step functions

Skill Development	
Skill:	Graphing using transformations and identify the transformation by comparing two graphs.
What do I teach?:	Declarative and procedural
	Beginning with the parent function, graph the new function (using technology) based on the transformation and state what the transformation is given two graphs.
How do I teach?:	Describe the graphical relationships between the two functions. 1.t $(x)=2\|x+1\| \mid$ and $v(x)=\frac{1}{2}\|x-3\|-1$ $2 . h(x)=\sqrt{x+1}$ and $k(x)=\frac{1}{2} \sqrt{x-3}-1$
CFU Questions:	

Teaching Note: This standard (A.REI.11) could be moved to Quarter 3 (wk 8 \& 9) in modeling unit.

A.REI. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Concept Development	
Concept:	Solving Systems of equations
Definition:	On a graph of two functions, the intersection(s), if any exist, are the solutions to a system of equations.
Critical Attributes:	f(x)=g(x)
Shared Attributes:	systems of inequalities
Non-Critical Attributes:	a system may have no, one, or many solutions
Examples:	Given two equations, identify the type of function, determine the possibilities for intersections, and then graph to confirm your predicted solution(s).
Non-Examples:	avoid the common error: if an ordered pair satisfies one equation, it may not represent a solution to the system since it may not be a solution to the other equations in the system
Resos:	http://ccssmath.org/?page_id=2149

Skill Development	Skill: Solving two equations for possible intersections and finding them algebraically. What do I teach?: Procedural How do I teach?: 1. graphing calculator or other technology 2. substitution, elimination methods for solving systems 1. Draw sketches where a quadratic function intersects an absolute value function at 4 points, 3..., 2, 1, 0. 2. How many liters of a 70\% alcohol solution must be added to 50 L of a 40% alcohol solution to produce a 50% alcohol solution?
CFU Questions:	3. Given the following equations determine the x value that results in an equal output for both functions. $f(x)=3 x-2$ $g(x)=(x+3)^{2}-1$

Integrated Math 3 Course Standard and Resource Guide Mathematical Modeling
UNIT 6

Overview Inverse Functions

F.BF. 1 Write a function that describes a relationship between two quantities.

b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model."
$(+) \mathrm{c}$ - Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $\mathrm{h}(\mathrm{t})$ is the height of a weather balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t})$) is the temperature at the location of the weather balloon as a function of time.

Concept Development	
Concept:	Function
Definition	A relation between a set of inputs and a set of outputs with the property that each input is related to exactly one output.
Critical Attributes:	Variables must be defined
Shared Attributes:	functions, relationships
Non-Critical Attributes:	the particular variable chosen to represent a quantity may vary
Examples:	$3 \mathrm{x}+4 \mathrm{y}=8$
Non-Examples:	$\mathrm{x}=10$
Possible CFU Questions:	Is $\mathrm{x}=5$ a function? Is $\mathrm{y}=6$ a function?
Resources:	http://ccssmath.org/?page_id=2189

Skill Development	
Skill:	Combining function with arithmetic operations
Procedural or Declarative:	Procedural
Process, Procedure, Steps:	When working through word problems show students how to combine to functions with addition, subtraction, multiplication, and division to form another function. I
Possible CFU' Questions:	The total revenue for a company is found by multiplying the price per unit by the number of units sold minus the production cost. The price per unit is modeled by $p(n)=-0.5 n^{2}+6$, where n represents the number of units sold. Production cost is modeled by $c(n)=3 n+7$. Write the revenue function.

F.BF. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Concept Development		Skill Developme	
Concept:	Transformations of exponential functions.$y=a b^{c x-h}+k$	Skill:	Transform exponential functions.
		What do I teach?:	Procedural (graphing) and Declarative (describing)
Definition:	transformations include translations (vertical/horizontal shifts), dilations		
		How do I teach?:	Suggest using tables and electronic tools (graphing calculator) to see transformation relationships.
Critical Attributes:	exponential function		
Shared Attributes:	location of k always has same transformation effect on ANY kind of function (exponential, absolute value,...)	CFU Questions:	Describe the graphical relationship between the two functions.$f(x)=2^{x}+7 \text { and } g(x)=2^{x+1}+7$
Non-Critical Attributes:	$f(x)$ could be $g(x)$ or $y \ldots$		
Examples:	$y=e^{x+3}-4$ is $y=e^{x}$ shifted 3 left (horizontal shift) and down 4 (vertical shift).		
Non-Examples:	if $k=1$ or zero: $y=3^{1 x+0}$ has no transformation		
Resources:	http://ccssmath. org/?page id $=2195$ Alg 2 text 7.2, 7.1		

F. BF. 4 Find inverse functions. and:

a. solve an equation in the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse
$(+) b$ - Verify by composition that one function is the inverse of another.
$(+) \mathrm{c}$ - Read values of an inverse function from a graph or a table, given that the function has an inverse.

Concept Development	
Concept:	inverse function
	An inverse relation interchanges the input and output values of the original relation. If both the original relation and the inverse relation are functions, then the two functions are called inverse functions.
Fefinition:	Functions f and g are inverses of each other provided $\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{x} . \quad$ The function g is denoted by f^{-1} is read as f inverse.
Critical Attributes:	one to one
Shared Attributes:	some functions can be inverse functions with a constrained domain
Non-Critical Attributes:	function type or degree can vary
Examples:	$\mathrm{f}(\mathrm{x})=3 \mathrm{x}+4$ has an inverse of $f^{-1}(x)=\frac{x-4}{3}$

Skill Development	Skill: Find inverse functions. What do I teach?: Using algebraic rules of manipulation: 1. switch x and y roles, and then solve for y 2. when using a model, avoid confusion by not switching variables, but instead just solve for the desired variable in terms of the other(s) How do I teach?: 1. For the following functions, find the inverse if it exists: $f(x)=\frac{2 x+5}{x-7}, g(x)=3\left(2^{x}\right)+1, h(x)=\sqrt{x+5}-\sqrt{x+1}$ 2. The average price P (in dollars) for a National Football League ticket can be modeled by $P=35 t^{0.192}$ where t is the number of years since 1995. Find the inverse model that gives time as a function of the average ticket price. CFU Questions:

F.IF. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity
(Include rational, square root, cube root; emphasize selection of appropriate models)

Concept Development	
Concept:	Finding key features of models of relationships.
Definition:	A function is a relationship between a set of INPUTS and a set of permissible OUTPUTS with the property that each input is related to exactly ONE output.
Critical Attributes:	Two quantities, like time and value or time and population growth
Shared Attributes:	Every function can be represented in four ways: algebraically, graphically, numerically (data tables). and verbally.
Non-Critical Attributes:	Type of function (polynomial, exponential, etc.)
Examples:	(See influenza epidemic example in resources below.)
Non-Examples:	
Resources:	http://www.illustrativemathematics.org/standard s/hs Alg 2 textbook section 6.3, 6.4, 7.1, 7.2 http://ccssmath.org/?page_id=2159

Skill Development	Interpret key features from tables and graphs, and graph from verbal descriptions
Skill:	Declarative: Key features may includel intercepts, intervals where function is increasing/decreasing, positive or negative, relative min/max values, symmetries, end behavior, periodicity,
What do I teach?:	Have students label independent and dependent variables on axis, plot points, interpret information from graphs, write summaries of data
How do I teach?:	The function $C(t)=\frac{5 t}{0.01 t^{2}+3.3}$ describes the concentration of a drug in the bloodstream over time. Graph the function. identify and interpret the intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior.
CFU Questions:	

F.IF. 7 (Unit 4, Part1)

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases

- Graph logarithmic functions, showing intercepts and end behavior.

Concept Development		Skill Development	
Concept:	Graphing Logarithmic Function	Skill:	Graphing logarithmic functions
	Rough sketch is a general approximation of what the	What do I teach?:	Procedural
	A logarithm is defined as: Let b and y be positive numbers with $b \neq 1$. The logarithm of y with base b is denoted by $\log _{b} y=x$ if	How do I teach?:	Use table and plot points then sketch rough graph. Or students use technology (web-based application or standard graphing calculator) to plot graphs.
Definition:	$\text { "log base } b \text { of } y . "$		Graph the function: $y=\log _{2}(x+3)+1$. Provide and
Critical Attributes:	Rough sketch of critical points: x - or y -intercept and vertical or horizontal asymptote.	CFU Questions:	visible. Describe the end behavior and identify the asymptote.
Shared Attributes:	x-intercepts.		
Non-Critical Attributes:	Base could be any real number greater than 0 .		
Examples:	Rate of growth or decay. $y=\log _{3} x, g(x)=\log _{\frac{1}{2}}(x-3)+2, h(t)=\ln (t)$		
Non-Examples:	using too few or too many points		
Resources:	See Alg 2 text sections 7.4 https://docs.google.com/a/muhsd.org/document/d/1QB2 CONSoTZvfxHTd1zN97KLhfiJHcMN4HpFrCfV2oNE/edit		

F. BF. 5 (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

Concept Development	
Concept:	logarithm
	A function $y=\log _{b} x$ any number such that $b>0, b \neq 1$, and $x>0$ $y=\log _{b} x$ is equivalent to $x=b^{y}$
Definition:	

This standard represents an application of the students' understanding of the relationship between logarithms and exponents.

Skill Development	Skill:
What do I teach?:	Understand inverse relationship of exponential and logarithmic functions
Declarative	
How do I teach?:	You can graph exponential and logarithmic functions and show the line of symmetry, plot points and switch them, or calculate $f\left(f^{1}(x)\right)$ and prove that it equals x. All of those should be enough evidence to support the fact that exponentials and logarithms are inverses.
CFU Questions:	How do you know that two functions are inlerses of each other?

F.LE. 4 *

For exponential models, express as a logarithm the solution to $(\boldsymbol{a b})^{c t}=d$ where a, c, and d are numbers and the base b is 2 , 10 , or e; evaluate the logarithm using technology.

Concept Development	
Concept:	Logarithms and exponents are inverse functions.
Definition:	Let b and y be positive numbers with $b \neq 1$. The logarithm of y with base b is denoted by $\log _{b} y=x$ if and only if $b^{x}=y$. The expression $\log _{b y} y$ is read as "log base b of y."
Critical Attributes:	base b is positive real number such that $b \neq 1$
Shared Attributes:	variables and constants, positive values
Non-Critical Attributes:	----------------
Examples:	Newton's Law of Cooling: $T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R},$ Defined as initial temperature T_{0}, temperature T after t minutes, where T_{R} is the surrounding temperature and r is the substance's cooling rate
Resources:	http://ccssmath.org/?page_id=2221 Alg 2 text section 7.5, 7.6

Skill Development	Use logarithms to solve exponential equations. Use exponents to solve logarithms.
What do I teach?:	Use equivalence of logs and exponents (p 515, 517), properties of exponents (p 330) and of logarithms (p 499, 507, 508). Teach bases 2, 10, and e.
How do I teach?:	Use technology, so students can see graphs and tables to investigate exponents and logarithms
CFU Questions:	Convert $\log _{2}\left(\frac{1}{16}\right)=-4$ to exponential form. Expand using logarithmic properties $\ln \left(\frac{3 x^{2}}{y+1}\right)$

F.LE.4.1

Prove simple laws of logarithms. CA *

Concept Development		Skill Development	
Concept:	Logarithms and exponents are inverse functions.	Skill:	Prove simple laws of logarithms.
Definition:	Let b and y be positive numbers with $b \neq 1$. The logarithm of y with base b is denoted by $\log _{b} y=x$ if and only if $b^{x}=y$. The expression $\log _{b} y$ is read as "log base b of y."	What do I teach?:	$\begin{aligned} & \log A-\log B=\log \frac{A}{B} \\ & \log A-\log B=\log \frac{A}{B} \\ & \log A^{n}=n \log A \end{aligned}$
	base b is positive real number such that		
Critical Attributes:		How do I teach?:	Use the properties of exponents to help the students understand and/or use technology to investigate some example to show that the properties are equal.
Shared Attributes:	variables and constants, positive values		
Non-Critical Attributes:	-------....---		
Examples: Resources:	Newton's Law of Cooling: $T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}$ Defined as initial temperature T_{0}, temperature T after t minutes, where T_{R} is the surrounding temperature and r is the substance's cooling rate http://www.illustrativemathematics.org/sta ndards/hs http://ccssmath.org/?page_id=2221 Alg 2 text section 7.5, 7.6	CFU Questions:	1. Simplify $3 \log x-\log x^{2}$. 2. Condense to express as a single logarithm: $\log _{3}(x+5)+\log _{3}(x-5)-4 \log _{3}(2)$ 3. Expand to express as a multiple of logarithms: $\ln \left(\frac{(x+5)^{6}\left(x^{2}-4\right)^{7}}{\left(x^{3}-5\right)^{8}}\right)$

F.LE.4.2

Use the definition of logarithms to translate between logarithms in any base. CA *

Concept Development	Logarithms and exponents are inverse functions.
Concept:	Let b and y be positive numbers with $b \neq 1$. The logarithm of y with base b is denoted by $l^{\prime} g_{b} y=x$ if and only if $b^{x}=y$. The expression $\log _{b} y$ is read as "log base b of $y . "$
Definition:	base b is positive real number such that $b \neq 1$
Critical Attributes:	variables and constants, positive values
Shared Attributes:	Newton's Law of Cooling: $T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}$, Defined as initial temperature T_{0},
Non-Critical Attributes:	temperature T after t minutes, where T_{R} is the surrounding temperature and r is the substance's cooling rate
Examples:	http://www.illustrativemathematics.org/sta ndards/hs
Resources:	http://ccssmath.org/?page id=2221 Alg 2 text section $7.5,7.6$

Skill Development	
Skill:	Use logarithms to solve exponential equations. Use exponents to solve logarithms.
What do I teach?:	Use equivalence of logs and exponents (p 515,517), properties of exponents (p 330) and of logarithms (p 499, 507, 508). Teach bases 2, 10, and e.
How do I teach?:	Show examples that apply the rules of logs. Find x. $\log _{3} 8=x$ Rewrite as $8=3^{x}$ Now take log of both sides of eq: $\log 8=\log 3^{x}$ Apply prop of log: $\log 8=x \log 3$ Isolate variable x : $\frac{\log 8}{\log 3}=x$ Then conclude: $\frac{\log 8}{\log 3}=x=\log _{3} 8$
CFU Questions:	1. Find $\log _{2} 30$ using a calculator or table. 2. Graphene problem https://www.illustrativemathematics.org/illu strations/1569

F.LE.4.3

Understand and use the properties of logarithms to simplify logarithmic numeric expressions and to identify their approximate values. CA *

Concept Development		Skill Development	
Concept:	Logarithms and exponents are inverse functions.	Skill:	approximate values of logarithms
	Let b and y be positive numbers with	What do I teach?:	procedural
		How do I teach?:	Give examples.
Definition:	$b^{x}=y$. The expression $\log _{b} y$ is read as "log base b of y."	CFU Questions:	1. Evaluate $\log 16$ given that $\log 4 \approx 0.602$.
Critical Attributes:	base b is positive real number such that $b \neq 1$		
Shared Attributes:	variables and constants, positive values		
Non-Critical Attributes:	--------------		
Examples:	Newton's Law of Cooling: $T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}$ Defined as initial temperature T_{0}, temperature T after t minutes, where T_{R} is the surrounding temperature and r is the substance's cooling rate		
Resources:	http://ccssmath.org/?page id=2221 Alg 2 text section 7.5, 7.6		

Integrated Math 3 Course Standard and Resource Guide

 Mathematical ModelingUNIT 7:

Overview

A.CED. 1

Create equations and inequalities in one variable including ones with absolute value and use them to solve problems.
Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA

Concept Development	
Concept:	Sequences (arithmetic and geometric)
	A set of quantities ordered in the same manner as the positive integers, in which there is always the same relation between each quantity and the one succeeding it. This relation is either a common ratio or a common difference.
Definition:	Common Difference (arithmetic sequences) Common Ratio (geometric sequences)
Critical Attributes:	A sequence can be finite, such as: $\{1,3,5,7,9\}$ or it can be infinite, such as: $\{1,1 / 2,1 / 3,1 / 4, \ldots 1 / n\}$.
Shared Attributes:	1.6 Given the sequence $7,9,11,13, \ldots$ write the equation for a sub n.
Examples:	Given the sequence $3,6,12,24, \ldots$ write the equation for a sub n.
Non-Examples:	$\{1,3,8,5,6,4,11,8,57\}$
Resources:	http://ccssmath.org/?page id=2117 Alg 2 text sections $12.1-12.4$ http://www.illustrativemathematics.org/standards/hs

Skill Development	Skill: Recognizing patterns with common differences or common ratios between terms. What do I teach?: Procedural Guess and check, using operations on successive terms to discover pattern. How do I teach?: Provide examples of sequences and ask students to discover the patterns (the common difference or common ratio) between the terms in the sequence and from there write an expression that describes the relation of the terms in the sequence. Determine if the sequence is arithmetic. If it is, find the common difference. 1) $35,32,29,26, \ldots$ 2) $-3,-23,-43,-63, \ldots$ CFU Questions: Determine if the sequence is geometric. If it is, find the common ratio. 3) $4,16,36,64, \ldots$ 4) $-3,-15,-75,-375, \ldots$

F.IF. 6

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Concept Development		Skill Development							
Concept:	Average Rate of Change	Skill:	Calculate rate of change						
	Average Rate of Change is a process that calculates the amount of change in one item divided by the corresponding amount of change in another.	What do I teach?:	Procedural (calculation) and Declarative (interpreting meaning from the rates in context)						
Definition:		How do I teach?:	Choose an interval and calculate rate of change (slope of line connecting the endpoints of the chosen interval).						
Critical Attributes:	interval, variables, graph or table of values		1.) The following table shows the average daylight hours in Alaska for each month. Months are represented by the number of months after January						
Shared Attributes:	slope of lines, unit values								
Non-Critical Attributes:	actual values,		Month	0	2	4	6	8	10
	1.) (see "Garbage Trucks" Performance task):		Daylight Hours	5.7	10.4	16.9	19.2	14.3	8.5
Examples:	2.) Mathemafish Population http://www.illustrativemathematics.org /illustrations/686	CFU Questions:	Calculate the average rate of change from March to September.						
Resources:	http://ccssmath.org/?page_id=2163								

F.BF. 2 (review from math 1)

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Concept Development	Arithmetic and Geometric Sequences Recursive Equation	Skill Development	
		Skill:	Write arithmetic \& geometric sequences with an explicit formula
Concept:		Procedural or Declarative Knowledge	Procedural
	Arithmetic Sequence. $\mathrm{t}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}-1}+\mathrm{d}$ (replace t with a) where d is the common difference; Geometric Sequence: $a_{n}=r^{*} a_{n-1}$ where r is the common ratio		
Definition:		Procedure, process, or steps to execute the skill	Ddtermine how to write as an equation and also as a recursive (repetitive routine). $F(x)=x$ or $F(x)=F(x-1)+1$ respectively.
	Arithmetic: need common difference d, previous term; Geometric: need common ratio r, previous lerm		
Critical Attributes:		CFU Questions:	In year 1, you are a year old. In year 2 , you are 2 years old, and so on. At any point, you can ask the question: "After x years, how old will I be?"
Shared Attributes:	sequence of numbers		
Examples:	Arithmetic $2,4,6,8, \ldots ; 3,9,15,21, \ldots$ Geometric $4,20,100,500, \ldots ; 40,20,10,5, \ldots$		
Non-Examples:	Arithmetic $2,4,6,8 ; 3,5,9,15,23, \ldots$ Geometric $4,20,100,500 ; 4,10,18,28,40$		
	Write a rule for the arithmetic sequence $17,14,11,8, \ldots$ then find $\mathrm{a}^{\wedge} 20$ (20 is subscript). Write a rule for the geometric sequence $4,20,100,500, \ldots$ then find $2^{\wedge 7}$ (7 is subscript).		

A.SSE. 4

Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.

Concept Development	
Concept:	Finite geometric series
Definition:	The expression formed by adding the terms of a geometric sequence is a called a geometric series. The sum of the first n terms in a geometric series is denoted by S_{n}. a_{1} represents the first term and r represents the common ratio.
Critical Attributes:	Common ratio $=1$
Examples:	http://www.illustrativemathematics.org/illust rations/1283
Non-Examples:	2, 4, 6, 8, 10, 12, 14
Resources:	http://ccssmath.org/?page id=2101 Algebra 2 text section 12.3 and 12.4

Skill Development	Derive and Calculate sum of geometric series.
Skill:	Procedural
What do I teach?:	Show derivation through examples. After several examples, students are then brought to conclude the general formula and can then apply it in situations.
dow I teach?:	1. In 1990, the total box office revenue at U.S. movie theaters was about $\$ 5.02$ billion. From 1990 through 2003, the total box office revenue increased by about 5.9\% per year. a.) Write a rule for the total box office revenue an (in billions of dollars) in terms of the year. Let $n=1$ represent 1990. b.) What was the total box office revenue at U.S. movie theaters for the entire period 1990-2003?
2. Write 0.333... as an infinite	
geometric series. Represent this series	
using summation notation. Find the	
sum.	

Mathematical Modeling

UNIT 8: Modeling with Systems of Equations/Inequalities

Overview \quad Additional modeling with systems of equations/inequalities if needed.

Integrated Math 3 Course Standard and Resource Guide

Mathematical Modeling
 UNIT 9

Overview \quad Apply geometric concepts in modeling situations.

G.MG. 1

Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).

Concept Development	geometric shapes
Concept:	Shapes include: squares, cubes, cylinders, circles, spheres, triangles, cones, ...
Definition:	What shape would best model a tree trunk? Use it to find volume of wood in a tree trunk with diameter=3 feet and length=30 feet.l
Critical Attributes:	properties of shapes Examples cfu: Resources:

Skill Development	
Skill:	Describe which geometric shapes correspond to real life objects
What do I teach?:	declarative
How do I teach?:	Show visuals and describe them with geometric shapes.
CFU Questions:	Which geometric shape does the jar represent?

G.MG. 2

Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).

Concept Development		Skill Development	
		Skill:	Find the density of geometric figures
Concept:	density	What do I teach?:	Procedural
	density = mass/volume. Other ratios such as population density	How do I teach?:	Show examples of real life applications
Definition:	(people/square mile) fall into this concept.	CFU Questions:	The current population of New York is 3.8 million. The area of New york City is 300 square miles. Calculate the population density of New York. \|
Critical Attributes:	mass, volume, units		
Shared Attributes:	area		
Non-Critical Attributes:	the particular units of mass and volume could need to be converted depending on situation		
Examples:	A hot air balloon holds 74,000 cubic meters of helium, a very noble gas with the density of 0.1785 kilograms per cubic meter. How many kilograms of helium does the balloon contain?		
Non-Examples:	Find the volume of a cylinder whose radius is 4 cm and height is 10 cm .		
Resources:	http://ccssmath.org/?page id=1306		

G.MG. 3

Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Concept Development	
Concept:	Geometric Modeling with Constraints
Definition:	Constraints include limits to cost, size, shape. Minimum means least. Maximum means most. Ratios are used to change scales.
Critical Attributes:	area, perimeter, volume
Shared Attributes:	length and width and height
Non-Critical Attributes:	radius
Examples:	A triangle has a perimeter of 100 centimeters and one side is 35 centimeters. The other two sides have a ratio of 5:8. What is the length of the longest side of the triangle?
Non-Examples:	Find the area of a rectangle that is 5 ft x 4 ft.
Resources:	http://ccssmath.org/?page_id=1306

Skill Development	Skill:
What do I teach?:	calculating measures of real life geometric figures.
How do I teach?:	Shocedural
	Show students real life applications and solve. complex-shaped parking lot. Work with given constraints such as standard parking stall size, area needed between sections of stalls, etc... Justify your work. Calculate the minimum fencing cost to make a 60,000 square foot grazing plot for a cow, given that it will be a rectangular plot made from a fence that costs \$100 for each 8 foot section. Find the new surface area when the volume of a spherical balloon is doubled from 100 to 200 cubic meters.
CFU Questions:	

G.GMD. 4

Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

Concept Development	
Concept:	Cross Sections
Definition:	A cross section is the face created by slicing an object.
Critical Attributes:	Cross Sections
Shared Attributes:	faces
Non-Critical Attributes:	slices could be in any of several directions, ie: parallel to x or y axis.
Examples:	Given a cylinder with radius 7 in and height 10 in , find the area of a cross section that is parallel to its base.
Non-Examples:	Find the volume of sphere whose radius is 6 cm .
Resources:	http://ccssmath.org/?page_id=1306

Skill Development	
Skill:	identify cross sections of 2D and 3D figures
What do I teach?:	declarative
How do I teach?:	Use visuals with videos and demonstrations.
	Demonstrate how you could slice an octahedron to create a triangle, a square, a rhombus that is not a square. Find the volume of a cone created by rotating an equilateral triangle with perimeter = 36 meters.octahedron to create a triangle, a square, a rhombus that is not a square.
CFU Questions:	

Integrated Math 3 Course Standard and Resource Guide
Trigonometry
UNIT 10

\section*{| Overview | Right Triangle Trigonometry |
| :--- | :--- |}

G.SRT. 6

Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Concept Development
Concept: trigonometric ratios
Definition: A ratio of the length of two sides of a right triangle.
Critical Attributes: opposite, adjacent, hypotenuse
Shared Attributes: triangle, ratio
Non-Critical Attributes:
Examples: sine, cosine, tangent
Non-Examples: non-right triangle
Possible CFU Questions: What is the sine ratio (cosine or tangent) of an acute angle of a right triangle?

Skill Development
Skill: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
Procedural or Declarative: declarative
Process, Procedure, Steps:
Details: Need to know similarity, vocabulary for right triangles
Possible CFU' Questions: Why does the trig ratio stay constant the same despite the size of the triangle?

Skill: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Procedural or Declarative: declarative
Process, Procedure, Steps:
Details: Need to know similarity, vocabulary for right triangles
Possible CFU' Questions: Why does the trig ratio stay
constant the same despite the size of the triangle?

Explain and use the relationship between the sine and cosine of complementary angles.

Skill Development

Skill: Explain and use the relationship between the sine and cosine of complementary angles.

Procedural or Declarative: Declarative.
Process, Procedure, Steps:
Details: know what complementary angles and trig definitions

Possible CFU' Questions:

1. Explain the relationship between the sine A and cosine B.
2. If the $\sin 56^{\circ}=0.829$ what is $\cos 34$.

Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Possible CFU Questions:) A young boy lets out 30 ft of string on his kite. If the angle of elevation from the boy to his kite is 27°, how high is the kite?

Skill Development

Skill: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Procedural or Declarative: Procedural
Process, Procedure, Steps: Solve for an unknown using trig ratios

Details: angle of depression or elevation
Possible CFU' Questions: A ranger is on top of a 50 -foot tower and spots a fire. If the angle of the depression is 30 , how far is the fire from the base to the fire.

Skill Development

Skill: Use special right triangle ratios to find side lengths of special right triangles.

Procedural or Declarative: Procedural
Process, Procedure, Steps: Solve for the unknown using ratios (similar triangles).

Possible CFU' Questions: Find the value of \mathbf{z}.

G.SRT. 11

${ }^{(+)}$Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

Concept Development	
Concept:	Law of Sines and Cosines
Definition:	Identities that are used to find missing pieces of oblique triangles
Critical Attributes:	pythagorean thm, trigonometric ratios
Examples:	Find the lengths of a and b.
Non-examples:	Cind the legth of BC
Possible CFU:	When do you use the law of sines or the
law of cosines?	

Skill Development	Apply the law of cosines and sines
Skill:	Procedural
Procedural or Declarative:	Use the formula to solve problems. Process, Details: Possible CFU's across a ravine laid out the distance $B C=36$ yards along one side of the ravine. They measured $\angle B=52$ and $\angle C=48$. To the nearest yard, how long will the bridge be?

Integrated Math 3 Course Standard and Resource Guide

Trigonometry

 UNIT 11:
Overview Unit Circle

F.TF. 1

Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.

F.TF. 2

Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

Concept Development	
Concept	unit circle
Definition	A unit circle is a circle that has a radius of one unit
critical attributes	coordinate plane, radian measure, trigonometric function
Examples:	
Possible CFUs	Explain why $\sin \theta=y$ and $\cos \theta=x . \mid$
Resources:	http://ccssmath.org/?page_id=1304 http://www.themathpage.com/atrig/ unit-circle.htm

Skill Development	
skill	Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
Procedural or declarative	Declarative
Process	Go over (x, y) coordinates, pythagorean theorem, triangle trigonometry, quadrants and radian measure.
Possible CFU	Why is $\frac{3 \pi}{4}$ in the second quadrant and explain why the sine of that angle would be positive and the cosine would be negative. Figure 10.20

F.TF. 3 (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosines, and tangent for $x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number.

Concept Development						
Concept	unit circle					
Definition	A unit circle is a circle that has a radius of one unit					
critical attributes	coordinate plane, radian measure, trigonometric function					
Examples:						
non-examples						
Possible CFUs	Fill in the chart					
	Degrees	0	30°	45°	60°	90°
	Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
	$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undefined
Resources:	http://ccssmath.org/?page_id=1304 http://www.themathpage.com/atrig/unit-circle. htm					

Overview
 Graph and model sinusoids

F.TF.2.1 Graph all 6 basic trigonometric functions. CA

Concept Development	
Concept	trigonometric function
Definition	Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle.
critical attributes	coordinate plane, radian measure, trigonometric function
Examples:	
Possible CFUs	On the axes from 0 to 2π, graph: $y=2 \sin (3 x)$ State the amplitude, frequency and period of this graph.
Resources:	http://www.regentsprep.org/Regents/math/algtrig/ATT7/gr aphpractice.htm

Skill Development	graphing trigonometric functions
skill	Procedural
Procedural or declarative	using technology students can see a pattern of what happens when the amplitude, frequency, or vertical shift is changed on the equation.
Process	Given g(x) $=2$ sin(2x), do the following: a. state the amplitude and EXACT period b. graph the function on the interval (-2 $2,2 \pi)$ c. find the EXACT coordinates of the maximum using the graph d. find the EXACT coordinates of the minimum using the graph e. find the EXACT coordinates of the x-intercepts using the graph

F.TF. 5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

Concept Development	
Concept	periodic function
Definition	a function returning to the same value at regular intervals.
Critical attributes	amplitude, frequency, and midline
Examples:	The number of hours of daylight measured in one year in Ellenville can be modeled by a sinusoidal function. During 2006, (not a leap year), the longest day occurred on June 21 with 15.7 hours of daylight. The shortest day of the year occurred on December 21 with 8.3 hours of daylight. Write a sinusoidal equation to model the hours of daylight in Ellenville.
non-example	The temperature in an office is controlled by an electronic thermostat. The temperatures vary according to the sinusoidal function: $y=19+6 \sin \left(\frac{\pi}{12}(x-11)\right)$ where y is the temperature $\left({ }^{\circ} \mathrm{C}\right)$ and x is the time in hours past midnight. a.) What is the temperature in the office at 9 A.M. when employees come to work? b.) What are the maximum and minimum temperatures in the office?

CFU	A ferris wheel is 50 feet in diameter, with the center 60 feet above the ground. You enter from a platform at the 3 o'clock position. It takes 80 seconds for the ferris wheel to make one revolution clockwise. Find the model that gives your height above the ground at time $\mathrm{t}(\mathrm{t}=0$ when you entered).
Resources:	http://www.regentsprep.org/Regents/math/algtrig/ATT7/gra phpractice3.htm http://ccssmath.org/?page_id=1304

Integrated Math 3 Course Standard and Resource Guide
Statistics
UNIT 13:

Overview	Understand why two events are independent and determine independence. Understand conditional probability and find conditional probabilities. (math $\mathbf{2}$ review)
Standards	
S-CP.1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	

Concept Development
Concept: events as subsets of a sample space
Definition: Sample space is a collection of all possible outcomes. Event is a collection of outcomes from a sample space
Critical Attributes: events, unions, intersection, complements
Shared Attributes:
Non-Critical Attributes:
Examples: Rolling a die $\mathrm{S}=\{1,2,3,4,5,6\}$ an event can be, odd numbers= ($1,3,5)$
Non-Examples:
Possible CFU Questions: Describe the sample space when tossing two coins? Using the sample space find the outcomes for the event of getting two heads.

Skill Development

Skill: Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").

Procedural or Declarative: Declarative

Process, Procedure, Steps:

Details: Create and use Venn diagrams to illustrate relationships between sample spaces and events

Possible CFU' Questions: You have a set of 10 cards numbered 1 to 10 . Choose a card at random. Event A is choosing a number less than 7. Event B is choosing an odd number. Find the following events: find the intersection of A and B, find the union of A or B, find the complement of A, find the complement of B.

S-CP. 2

Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Concept Development
Concept: Independent events
Definition: Two events such that the occurrence of one event has no effect on the occurrence of the other event.
Critical Attributes: no effect
Sha red Attributes: events, occurrence
Non-Critical Attributes:
Examples: Rolling a die twice.
Non-Examples: Drawing a card and drawing another card without replacement.. Possible CFU Questions: Explain why rolling a die twice is an independent event.

Skill Development

Skill: Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Procedural or Declarative: Declarative and Procedural
Process, Procedure, Steps: Use venn diagrams or two- way tables to show $P(A$ and $B)=P(A) P(B)$

Details: Students need to explain why the two events are independent
Possible CFU' Questions: When rolling two dice:

1) What is the probability of rolling a sum that is greater than 7 ?
2) What is the probability of rolling a sum that is odd?
3) What is the probability of rolling a sum that is greater than 7 and is odd?
4) Are the events rolling a sum greater than 7 and rolling a sum that is odd
independent? Justify your answer
```
S-CP.3.
Understand the conditional probability of \(A\) given \(B\) as \(P(A\) and \(B) / P(B)\), and interpret independence of \(A\) and \(B\) as saying that the conditional probability of \(A\) given \(B\) is the same as the probability of \(A\), and the conditional probability of \(B\) given \(A\) is the same as the probability of \(B\)
```

```
Concept Development
```


Concept: conditional probability

Definition: The probability that event B will occur given that event A has occurred.

Critical Attributes: Probability
Shared Attributes: event
Non-Critical Attributes:
Examples: Probability of drawing a club given the first was a club.
Non-Examples: Probability of drawing an ace.
Possible CFU Questions: Explain why or why not an event is conditional

Skill Development

Skill: Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B

Procedural or Declarative: Procedural and Declarative
Process, Procedure, Steps: Calculate conditional probabilities using $\mathrm{P}(\mathrm{A} / \mathrm{B})=\underline{\mathrm{P}(\mathrm{A} \text { and } \mathrm{B})}$
$P(B)$
Details: Understand that events A and B are independent if and only if they satisfy $P(A)=P(A / B)$ or satisfy $P(B)=P(B / A)$

Possible CFU' Questions: Using the given information in a venn diagram or two way table calculate a conditional probability and determine if the two events are independent.

S-CP.4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.

Concept Development
Concept: two-way frequency table
Definition: a table in which frequencies correspond to two variables
Critical Attributes: two-way
Shared Attributes: table, data
Non-Critical Attributes:

Examples:

	COOKIE: A	COOKIE: \mathbf{B}	
AGE: ADULT	50	0	50
AGE: CHILD	0	50	50
	50	50	100

Possible CFU Questions: Explain why or why not this \qquad is a two-way frequency table.

Skill Development

Skill: Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.

Procedural or Declarative: Procedural

Process, Procedure, Steps: construct a two-way table by inputting data on two variables making sure the columns and rows add to the same grand total.

Details:

Possible CFU' Questions: Construct a two-way frequency table. On one axis, compare grade level and on the other axis, compare the favorite fast-food hamburger place (McDonalds, Burger King, Jack in the Box, In-and-out, Carls Jr.) Find the probability that it is a sophomore who likes McDonalds? What is the probability that a students likes Burger King over anything else?

S-CP.5.

Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

Concept Development
Concept: Conditional probability
Definition:The probability that event B will occur given that event A has occurred.
Critical Attributes: independence
Shared Attributes:
Non-Critical Attributes:
Examples: Is owning a smartphone independent from grade level?
Non-Examples:
Possible CFU Questions: Explain how do you know if two events are conditional or independent.

Skill Development

Skill: Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.

Procedural or Declarative: Declarative

Process, Procedure, Steps: The most important key in this lesson is to teach students to think critically about the questions they want answers to. From this, students should be able to link their questions to the types of data they will gather.

Finally, they should be able to assemble the data and infer relationships from the data using their knowledge about probabilities.

Details: students use the establish formulas in standard S.C.P . 3
Possible CFU' Questions: Compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

S-CP. 6.

Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.

Concept: conditional probability
Definition:The probability of an event (A), given that another (B) has already occurred.

Critical Attributes: already occurred
Shared Attributes: probability, event

Non-Critical Attributes:

Examples: Find the probability you passed science given you passed math.

Non-Examples:

Possible CFU Questions: Construct a tree diagram to find the conditional probability of getting heads on the second toss given the first toss was heads

Skill Development

Skill: Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.

Procedural or Declarative: Procedural

Process, Procedure, Steps: use venn diagrams, two-way table or tree diagram to find conditional probabilities

Details:

Possible CFU' Questions: Determine the probability of getting the flu, and compare that to the probability of getting the flu given that an individual takes high doses of vitamin C

S-CP. 7.

Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.

Concept Development

Concept: Addition Rule

Definition: A statistical property that states the probability of one and/or two events occurring at the same time is equal to the probability of the first event occurring, plus the probability of the second event occurring, minus the probability that both events occur at the same time.

Critical Attributes: union, intersections,
Shared Attributes: event, probability
Non-Critical Attributes:
Examples: Probability of drawing an ace or a spade.
Non-Examples: Probability of drawing an ace and a spade.
Possible CFU Questions: Explain how to use the addition rule when two events are given.

Skill Development

Skill: Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in terms of the model.

Procedural or Declarative: Procedural
Process, Procedure, Steps: students use addition Rule to find the P(A or B)

Details:

Possible CFU' Questions: Find the probability of drawing an ace or a spade.

Resources:

http://ccssmath.org/
http://www.geometrycommoncore.com/index.html
https://sites.google.com/site/misterbledsoe/cc2-videos
http://www.geogebratube.org/
S.IC. 1

Understand statistics as a process for making inferences about population parameters based on a random sample from that population.

Concept Development		Skill Development	
Concept:	Inference	Skill:	Compare and contrast methods of sampling procedures.
Definition:	a conclusion reached on the basis of evidence and reasoning		
		What do I teach?:	Declarative
Critical Attributes:	random sampling, population	How do I teach?:	Teach by describing different sampling
Examples:	A pollster wants to find out whether or not American citizens would support a candidate running for national office who wants to lower the legal drinking age from 21 to 18. They plan on doing this by sending 10,000 text messages across the entire United States to randomly selected, active, U.S. based phones with text messaging capabilities. Assume every text that is sent receives a reply. Why is this random sample, despite being truly randomly chosen, unlikely to be a good representative sample of the American population's opinion in an election?		samples.
		CFU Questions:	Why is picking out different candies from a bag without looking not as effective a random sample than if you were to assign numbers to each piece of candy and let someone else pick those randomly instead?
CFU's	A fair six-sided die is randomly tossed to get a sample of $1,1,1,1,1$, and 1 . Is this a random sample and why?		
Resources:	http://www.shmoop.com/common-core-standards/ ccss-hs-s-ic-1.htm\|\#drills https://www. illustrativemathematics.org/illustration s/122		

S.IC. 2

Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin lands heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?

Concept Development	
Concept:	Plausibility of a model.
Definition:	Plausible means that the model is likely to have produced certain data.
Critical Attributes:	simulation, sample, data-generated
Shared Attributes:	A six-sided die is biased. To find the probability that it rolls a 6, a simulation is done by a researcher. The die is rolled 120 times and the outcome is 6 only 15 times. What does this simulation suggest?
Examples:	http://ccssmath.org/?page id=1311 http://www.sophia.org/tutorials/simulations?pathway (ccss-math-standard-9-12sic2
Resources:	https://www.khanacademy.org/search?page_search query=s.ic.2
Skill Development	Compare model results with data.
Skill:	Declarative/Procedural?:

How do I teach?:	Use technology to help with setting up simulations.
CFU Questions:	Alma has developed a new kind of antibiotic that she expects to kill 90% of harmful bacteria when applied. She applied her antibiotic to a Petri dish full of bacteria, waited for it to take effect, and took a random sample of 200 bacteria. She found that 87% of them were dead. In light of the results, Alma had to test the hypothesis that the true percentage of dead bacteria is 90%. She performed 100 computer generated simulations of random samples of 200 bacteria, supposing the true percentage of dead bacteria is 90%, to find how likely it is that a sample would have 87% dead bacteria. The results of the simulations are plotted below. How do the results of the simulations affect the likelihood of the hypothesis that Alma's antibiotic kills 90% of bacteria? - The results are reasonably consistent with the hypothesis. - The results make it very unlikely that the hypothesis is correct. Measured \% of dead bacteria

S.IC. 3

Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

Concept Development	
Concept:	sampling
ways of gathering data	
Critical Attributes:	sample surveys, experiments, and observational studies
Shared Attributes:	random samples
Examples:	A scientist selects 500 smokers to test how long they can hold their breath. Not surprisingly, the smokers can't hold their breath for long. The average result was a measly 23 seconds. What kind of study was this?
Resources:	http://ccssmath.org/?page id=2361

Skill Development	Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.
Skill:	Declarative
Declarative?:	Provide students with different types of sampling methods and have discussions with them in small groups and whole class.
How do I teach?:	A pharmaceutical company is trying to figure out whether a drug called Smartieants can make you smarter. (It also tastes like candy. The more you eat, the smarter you can get.) They prepare a double-blind study as follows: Step 1: A randomly selected pool of individuals will be brought into a clinic and evaluated for any existing health conditions that would disqualify them from the experiment. Step 2: After passing the health screening the individuals will be split up into two groups: test and controlled. Step 3: The control group will receive a placebo, but neither the clinician administering it nor the participants know this. Step 4: The treatment group will receive SmartiePants, but neither the clinician administering it nor the participants know this. Where is the mistake in this double blind study?Explain what type of sampling method is this? I y
CFU Questions:	

S.IC. 4

Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

S.IC. 5

Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

S.IC. 6

Evaluate reports based on data.

Concept Development	data
Concept:	a collection of facts or information from which conclusions may be drawn.
Definition:	population proportion or population mean
Critical Attributes:	A study samples 100 Coca-Cola drinkers and finds that 99 of them really dislike the taste of the new cola drink. What inference can be drawn from this?
Shared Attributes:	http://ccssmath.org/?page_id=2367
Examples:	https://www.khanacademy.org/search?page_sear ch_query=s.ic.4
Resources:	

Skill Development	Skill: Students will be able to evaluate reports based on data Procedural/Declarative: Declarative How do I teach?: Provide students with different types of reports which can include graphs and tables. A nutritionist had a hypothesis that eating a single banana an hour before a marathon (a 42-km run) can improve performance and reduce running time. To test her hypothesis, she randomly assigned a group of 360 men about to participate in a marathon to two groups. One group was instructed to eat a single banana an hour before the race, and the other group was instructed to eat nothing during the few hours before the race. After the race was done, she compared the average running times of the two groups. The nutritionist found that the average running time of the group who ate a banana was 5 minutes shorter than the running time of the group who hadn't. Based on some re-randomization simulations, she concluded that the result is significant and not due to the randomization of the groups. What valid conclusions can be made from this result? CFU Questions:

If time permits and you want to challenge students, these last two standards may be introduced.

```
S.MD.6
(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
```

S.MD. 7
${ }^{(+)}$Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).

Overview Summarize, represent, and interpret data on a single count or measurement variable.

S.ID. 1 (math 1) Represent data with plots on the real number line (dot plots, histograms, and box plots).

Concept Development	
Concept:	data
Definition:	facts or information used usually to calculate, analyze, or plan something
Critical Attributes:	dot plots, histogram, and box plots
Shared Attributes:	graph
Non-Critical Attributes:	information gathered

S.ID. 2 (math 1)

Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

Skill Development	
Skill:	compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
Procedural or Declarative Knowledge	Procedural
Procedure, process, or steps to execute the skill	Provide students with data set have them plot on the appropriate graph and have compare the center and spread.
CFU Questions:	Jane collected some red and yellow roses. She measured the lengths of their stems, and drew the following box plots. Write down the median lengths of both the yellow and red roses to the nearest centimeter. Which color rose would you buy for a 40 cm tall vase?

S.ID. 3 (math 1)

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

S.ID. 4

Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

Concept Development	Concept: A normal distribution is modeled by a bell-shaped curve called a normal curve that is symmetric about the mean. Z-scores correspond to the number of standard deviations that the x-value lies above or below the mean xbar. Definition: properties of the normal distribution with the mean and standard deviation Critical Attributes: Shared Attributes: Standard Deviation, Mean, z-scores. Examples: The grades on a math midterm at Gardner Bullis are normally distributed with $\mu=76$ and $\sigma=4.5$. Daniel scored 64 on the exam. Find the z-score for Daniel's exam grade. Round to two decimal places. Resources: Alg 2 Textbook section 11.1 p 744-748 and section 11.3 p757-762 https://www.khanacademy.org/search?page_search query=s.id.4 http://ccssmath.org/?page id=2339

Skill Development	
Skill:	Students should be able to complete normal distribution calculations. Use properties of normal distributions to draw conclusions.
What do I teach?:	Know the properties of the normal distribution. Find z-values.
How do I teach?:	can use technology or table
	1. What is the relation between the z score and the standard deviation? 2. You purchased 10 baskets of strawberries at the local farmer's market and counted the number of strawberries in each basket. Based on your purchases, do you think the number of strawberries in a basket is normally distributed?

