

Integrated Math 3

Course Standards & Resource Guide

Integrated Math 3

Quadratics, Polynomials and Other Functions

- Unit 1: Solving Quadratics
- Unit 2: Graphing Quadratics
- Unit 3: Higher Order Polynomials
- Unit 4: Rational Functions
- Unit 5: Exploring Other Functions

Mathematical Modeling

- Unit 6: Inverse Functions
- Unit 7: Arithmetic and Geometric Sequences
- Unit 8: Modeling with Systems of Equations/Inequalities (see note in guide)
- Unit 9: Applying Geometric Concepts in Modeling

Trigonometry

- Unit 10: Right Triangle Trigonometry
- Unit 11: Unit Circle
- Unit 12: Graph and Model Sinusoids

Statistics

- Unit 13: Independence and Conditional Probability
- Unit 14: Understanding and Evaluating Random Processes in Experiments
- Unit 15: Summarize, Represent, and Interpret Data

Quadratics, Polynomials, and Other Functions

UNIT 1: Solving Quadratics

(Some standards will come from Math 2 to supplement)

Overview	Solve quadratic functions in various forms
----------	--

Priority standard

A.APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Supporting standards

A-SSE 3.a Factor a quadratic expression to reveal the zeros of the function it defines. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.)

Concept Development	Skill Development			
Concept: zeros of a quadratic expression	Skill: Factor a quadratic expression and find the zeros			
Definition: The points where the graph of the quadratic equation crosses	Procedural or Declarative: Procedural			
the x-axis.	Process, Procedure, Steps: Teach factoring as the undoing of binomial			
Critical Attributes: Zeros, factor	distribution.			
Shared Attributes: factor .	Details:			
Non-Critical Attributes:	Possible CFU' Questions: Explain how factoring is undoing a binomial distribution			
Examples: x ² +bx+c				
Non-Examples:				
Possible CFU Questions : Find the dimensions of a rectangle whose area is $2x^2 + 9x + 10$ ft ² .				
examples: Three forms of the quadratic function reveal different features of its graph.				
Standard form: $f(x) = ax^2 + bx + c$ reveals the y intercept, (0, c).				
Vertex form: $f(x) = a(x - h)^2 + k$ reveals the vertex (h, k) and thus the maximum or minimum value of the function.				
Factored form: $f(x) = a(x - x_1)(x - x_2)$ reveals the x-intercepts (x ₁ ,0) and (x ₂ ,0).				

A.SSE.1 Interpret expressions that represent a quantity in terms of its context.

a. Interpret parts of an expression, such as terms, factors, and coefficients.

b. Interpret complicated expressions by viewing one or more of their parts as a single entity

Concept Development		Skill Development	
Concept:	Polynomial Expressions	Skill:	explain (declarative): coefficient, variable, constant, exponent, degree of polynomial,
Definition:	A monomial or the sum of		polynomial type
	monomials	What do I teach?:	Declarative
Critical Attributes:	exponent of each monomial must be a whole number	How do I teach?:	Given various polynomials, have students identify and/or find terms and factors
Shared Attributes:	a leading coefficient, a constant term, the degree of the polynomial	CFU Questions:	Given that the volume of a box is $x^3 + 4x^2 + 5x + 2$ with at height x+1, what are
Non-Critical Attributes:	the number of monomials		the other dimensions.
Examples:	$4x^2 + 2x - 8$, $10x^5$, -3		
Non-Examples:	$x^{\frac{2}{3}}, 2^{x}, \frac{1}{2}^{-1}, 0x$		
Resources:	http://ccssmath.org/?page_id=2085		
	purplemath, mathisfun, algebralab.org, regentsprep.org, ccss.org, illustrativemathematics.org		

A.APR.3 (part 1)

Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Concept Development		Skill Dev	velopment
oncept:	Identifying the real zeros of a (quadratic) polynomial function (note: sketching rough graph will be done in Unit 2, Part 2)	Skill:	
finition:	Values of x that make a polynomial function equal to zero.	What do I teach?:	
Critical Attributes:	if f(x)=0, then x is a real zero for the polynomial	How do I teach?:	
hared Attributes:	one or more zeros may exist		
Non-Critical Attributes:	solutions that are imaginary may exist but are not used at this point	CFU Questions	
Examples:	$x^{2} - 8x + 12 = 0, x = 2, x = 6;$		
	$n^2 - 6n = 0, n = 0, n = 6;$		
	$24x^{2} + 8x + 2 = 5 - 6x, \ x = \frac{1}{6}, x = -\frac{3}{4}$		
Non-Examples:	anything that finds zeros incorrectly; for example (x+2)(x-1)=4, x=2, x=5		

N.CN.9 (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials (quadratics only)

	Skill Development	
Fundamental Theorem of Algebra (FTA) and its Corollary	Chill.	Show that the FTA is true for quadratic equation Find all solutions (zeros) for higher order equations.
If f(x) is a polynomial of degree n (n>0) then f(x)=0 has at least one solution in the set of complex numbers. What do I teach?:	Procedural	
The degree of polynomial will match the number of linear factors.	How do I teach?:	Factor polynomial to product of prime binomials/trinomials and use Zero Product Property
red Attributes: Find all zeros of polynomials from linear factorization -Critical Attributes: Some solutions could be real or imaginary. or a combination of both. How many solutions does the equation $x^3 + 5x^2 + 4x + 20 = 0$ have? Justify your answer. CFU Questions:		Use the Fundamental Theorem of Algebra to h identify the roots of the polynomials: $x^{3} - 2x^{2} + 4x - 8$ $x^{3} + x^{2} - x - 1$ $x^{4} + x^{3} + 4x^{2} - 4x$
	CFU Questions:	
You can't use FTA to find solutions to non-polynomials, like $x^{rac{1}{2}}-2^{x}=0$.		
http://ccssmath.org/?page_id=2046 Alg 2 text section 5.7 p 379-386		
	If f(x) is a polynomial of degree n (n>0) then f(x)=0 has at least one solution in the set of complex numbers. Corollary: number of solutions equals the degree, n. The degree of polynomial will match the number of linear factors. Find all zeros of polynomials from linear factorization Some solutions could be real or imaginary. or a combination of both. How many solutions does the equation $x^3 + 5x^2 + 4x + 20 = 0$ have? Justify your answer. You can't use FTA to find solutions to non-polynomials, like $x^{\frac{1}{2}} - 2^{-x} = 0$. http://ccssmath.org/?page_id=2046	Fundamental Theorem of Algebra (FTA) and its CorollaryIf f(x) is a polynomial of degree n (n>0) then f(x)=0 has at least one solution in the set of complex numbers. Corollary: number of solutions equals the degree, n.Skill:What do I teach?:What do I teach?:The degree of polynomial will match the number of linear factors.How do I teach?:Find all zeros of polynomials from linear factorizationSome solutions could be real or imaginary. or a combination of both.CFU Questions:How many solutions does the equation $x^3 + 5x^2 + 4x + 20 = 0$ have? Justify your answer.CFU Questions:You can't use FTA to find solutions to non-polynomials, like $x^{\frac{1}{2}} - 2^{-x} = 0$ http://ccssmath.org/?page_id=2046Image: Color of the solution of th

A-REI 4. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b

Concept Development	Skill Development		
Concept: quadratic equation	Skill: Students solve	and explain why the	ey choose the method
Definition: an equation that can be written in the form of	Procedural or Decla	arative: procedural	and declarative
f(x)= ax ² + bx +c where a, c, b are real numbers and a can not be zero.	Process, Procedure, Steps: Given several quadratic equation students should be able to identify and use the best method to		
Critical Attributes: solving the quadratic equation with different methods and discriminant	solve the equation. Discriminant: Use b ² - 4ac to determine how many solutions and what type of solutions a quadratic equation will have.		
Shared Attributes: factoring,	Details:		
Non-Critical Attributes:	Possible CFU' Questions: Explain why you chose a particumethod (factoring, completing the square, quadratic formula) solve a quadratic equation. Students may solve by factoring, completing the square, and using quadratic formula. The zero product property is used to explain why factors are set equal to zero. Students should relate the value of the square state.		
Examples : $f(x) = 3x^2 + 4x + 8$			
Non-Examples: f(x)= 2x + 4			is used to explain why the
Possible CFU Questions: Explain how you solved the quadratic equation.	discriminant to the type of	of root to expect. A na	telate the value of the atural extension would be to to the behavior of the grap
	Value of Discriminant	Nature of Roots	Nature of Graph
	$b^2 - 4ac = 0$	One real root	One x-intercept
	b ² -4ac > 0	Two real roots	Two x-intercepts
	b ² –4ac < 0	No real root	Does not intersect x-axis

A-APR 1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials

Concept Development

Concept: polynomials

Definition: A monomial or a sum or difference of monomials

Critical Attributes: monomials, binomials, trinomials

Shared Attributes: sum, difference, product

Non-Critical Attributes: standard form

Examples: 3x, 4x-5, x²+5x+6

Non-Examples: 3/x, x⁽⁻²⁾

Possible CFU Questions: Explain why _____ is or is not a polynomial. Create a 3-term polynomial expression..

Skill Development

Skill: "Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication."

Procedural or Declarative: Declarative

Process, Procedure, Steps: n/a

Details:

Possible CFU' Questions: Is the sum (difference or product) of 3x+4 and 5x+6 a polynomial?

N.CN.7 Solve quadratic equations with real coefficients that have complex solutions.

Concept Development	Skill Development		
Concept: Complex solution	Skill: Solve quadratic equations with real coefficients that have complex solutions		
Definition : any number that can be written in the form a + bi with a and b are real.	Procedural or Declarative: Procedural		
Critical Attributes: form a + bi with a and b are real.	Process, Procedure, Steps: Students can choose the method to solve the guadratic equation for		
Shared Attributes:	example: factoring, completing square, quadratic formula		
Non-Critical Attributes:	Details:		
Examples : $3x^2 + 4x + 7 = 0$	Possible CFU' Questions: Find the solutions for the		
Non-Examples: x ² + 4x + 4	given quadratic equation $2x^2 + 3x + 8=0$		
Possible CFU Questions: Explain how do you know the solution to the quadratic equation is complex?	 Examples: Within which number system can x² = - 2 be solve Explain how you know. Solve x² + 2x + 2 = 0 over the complex numbers. Find all solutions of 2x² + 5 = 2x and express them in the <i>bi</i>. 		

N.CN.1 Know there is a complex number *i* such that $i^2 = \sqrt{-1}$, and every complex number has the form a + bi with a and b, real.

N.CN.2 Use the relation \vec{r} = -1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers

Concept Development		Skill Development			
Concept: complex number		Skill: Know there is a com		hi with a s	nd h representing real numbers
Definition: any number that can be written in th	ne form a + bi with a and b are real.	 Know every complex number has the form a+bi, with a and b representing real numbers. Procedural or Declarative: Declarative 			
Critical Attributes: $i = \sqrt{-1}$ or $i^2 = -1$, $a + bi$					
Shared Attributes: solutions to a quadratic fur	nction, real part, imaginary part	Process, Procedure, Step	5.		
Non-Critical Attributes: a and b real numbers		Details:			
Examples: 3+2i, 0+4i, 2+0i					Problem
Non-Examples: 5 4i				1.	√-36
Possible CFU Questions: Explain what a co	omplex number is.			2.	2√-49
Resources: http://ccssmath.org/?page_id	=2030			3.	$\frac{-3\sqrt{-10}}{5\sqrt{-8}}$
	ession. Justify each step using the d distributive properties. (3 - 2 <i>i</i>)(-7 + 4 <i>i</i>) Ilows:				
(3 - 2i)(-7 + 4i)					
3(-7 + 4 <i>i</i>) -2 <i>i</i> (-7 + 4 <i>i</i>) Dia -21 + 12 <i>i</i> + 14 <i>i</i> - 8 <i>i</i> ² Dia					
$-21 + (12i + 14i) - 8i^2$ As					
$-21 + i(12 + 14) - 8i^2$					
$-21 + 26i - 8i^2$	Computation				
-21 + 26 <i>i</i> - 8(-1)	$i^2 = -1$				
-21 + 26 <i>i</i> + 8	Computation				
-21 + 8 + 26 <i>i</i> -13 + 26 <i>i</i> Co	Commutative Property				

A.CED.1 Create equations and inequalities in one variable and use them to solve problems. *Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*

Concept Development		Skill Development		
Concept:	Writing equations/inequalities in one variable with modeling.	Skill:	writing an equation to represent a situation involving unknown quantities (using variables)	
Definition:	An equation/inequality in one variable.	What do I teach?:	declarative (& procedural for specific cases/	
Critical Attributes:	one variable		examples)	
Shared Attributes:	the same variable can appear in different equations	How do I teach?:	determine unknown variables, state whether or how they are related to one another including	
Non-Critical Attributes:	the actual variable chosen to represent a quantity		constants when appropriate,	
	Express the area of a rectangle using variable expressions to represent the lengths of the sides	CFU Questions:	Math Performance Task: "Parking Lot"	
Examples:	resulting in a quadratic equation.	Examples:	6 1 1 1 1 1 1 1 1 1 1	
Non-Examples:	an expression (by definition not an equation)		e following trapezoid has area 54 cm ² , set up o find the length of the base, and solve the	
Resources:	Alg 2 textbook section 1.3 p 23 problems 68-72, http://www.illustrativemathematics.org/illustrations/582	path. The height h in ejected from the volc	e eruption of a volcano follows a parabolic feet of a piece of lava <i>t</i> seconds after it is cano is given by $h(t) = -t^2 + 16t + 936$. After does the lava reach its maximum height of	

A.CED.3 (Unit 15) (Unit 6)

Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

Concept Development		Ski
Concept:	Interpret solutions as viable or nonviable options in a modeling context.	Skill:
Definition:	Constraints are Domain or Range restrictions to solutions.	What do I teach?:
Critical Attributes:	The model has at least one constraint.	How do I teach?:
Shared Attributes:	Linear Programming: Feasible Region, Critical Points.	CFU Questions:
Non-Critical Attributes:	The number of constraints; the set of values of the constraint(s).	
Examples:	See Resources	
Non-Examples:	All solutions are possible	
Resources:	Alg 2 textbook sect 2.8 p 132-137, section 2.3 p94, 95. Linear Programming on p 174-176.	

Integrated Math 3 Course Standard and Resource Guide

Quadratics, Polynomials, and Other Functions

UNIT 2 : Graphing Quadratics

Overview Solve quadratic functions in various forms

Priority standard

A. APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Students will be able to use the zeros to construct a rough graph of the function defined by the polynomial.

Concept Development		Skill De	velopment
Concept:	Graphing Quadratics		
	the set of all points whose coordinates are	Skill:	
Definition:	(x, f(x))	What do I teach?:	
Critical Attributes:	Rough sketch of parabola has two zeros	Have de Lteach2	
Shared Attributes:	two zeros can be identical	How do I teach?:	
Non-Critical Attributes:	Additional points, vertex coordinates	-	
	Sketch the following functions:	CFU Questions:	
	f(x) = (x+3)(x-3)		
Examples:	$f(x) = 3x^2 - 6x + 4$		
Non-Examples:	using too few or too many points	_	
Resources:	http://ccssmath.org/?page_id=2107	_	

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*

Concept Development	Skill Development	
Concept: graph of a quadratic function	Skill: interpret key features of graphs and tables in terms	
Definition: the collection of all ordered pairs (x, f(x)) in a plane	the quantities	
Critical Attributes: vertex, intercepts, relative maximums and	Procedural or Declarative: Declarative	
minimums	Process, Procedure, Steps:	
Shared Attributes: intercepts	Details: Can use graphing calculators to show key feature	
Ion-Critical Attributes:	Possible CFU' Questions: (Verbal description) A balloo	
Examples: f(x) = x ^A 2 + 2x + 3	rises to a height of 20 feet. After 40 minutes, the balloon i back on the ground. What are the intercepts? What is the vertex?	
Non-Examples:		
Possible CFU Questions: What are the intercepts and vertex of the following quadratic (graph, table, verbal descriptions)		

F.IF.7a (part 1 and part 2 below)

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

a. Graph linear and quadratic functions and show intercepts, maxima, and minima."

c) Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

Concept Development		Skill Development	
Concept:	Graphing (Quadratics)	Skill:	Find vertex, axis of symmetry, max, min, ze
5.0.11	the set of all points whose coordinates are	What do I teach?:	Procedural
Definition:	(x,f(x))	How do I teach?:	Find the vertex(vertices), identify axis of symmetry, find the zeros
Critical Attributes:	Sketch of parabola has a vertex and two critical points		
	Critical points are zeros. Symmetry about axis		Graph the function: $f(x) = 2x^2 + 7x + 3$ Identify key features: vertex, y-intercept,
Shared Attributes:	of symmetry (one side could be y-intercept, for example)	CFU Questions:	x-intercepts, line of symmetry, and end behavior.
Non-Critical Attributes:	Additional points		
	Given: $y = -(1/2)(x + 2)(x - 2)$,		
	sketch the graph.		

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

(Math 2 standard)

F.IF.8.a

Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

Concept Development		Skill Development	
Concept:	Equivalent forms of functions	Skill:	Complete the square. Com
Definition:	functions that have the same solution set	What do I teach?:	Procedural
Critical Attributes:	Must be equivalent for all values of x.	How do I teach?:	Std to Vertex: use completi Vertex to Std: distribute and
Shared Attributes:	Zeros, extreme values, end behavior. Equivalence.		Change the following function vertex form.
Non-Critical Attributes:	values of maxima/minima change from function to function		"in context" example: Suppo
Examples:	Find the x-intercepts of $f(x) = -3(x - 2)^2 + 3$		$h(t) = -5t^2 + 10t$
Nee Evender	Find the x-intercepts of $f(x) = (x + 2)(x - 5)$		giving the height of a diver ab meters), t seconds after the springboard.
Non-Examples: Resources:	http://www.illustrativemathematics.org/illustrations/640		How high above the water is t Explain how you know.
			When does the diver hit the w At what time on the diver's de
			is the diver again at the sam springboard?
		CFU Questions:	When does the diver reach t

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Concept Development		Skill Development	
Concept:	compare or contrast two different functions given in two different forms	01-71-	Graph functions, identify ordered pairs, identify independent and dependent variables from given
Definition:	"forms" given: algebraically, graphically, numerically in tables, and verbally	Skill:	data
Critical Attributes:	each function must be represented in a different form	What do I teach?:	Declarative
Shared Attributes:		How do I teach?:	Compare/contrast two functions of same type (ex: quadratic or exponential) at specific points
Non-Critical Attributes:	the two functions must be same type (ex: both quadratic). Compare this quadratic function expressed algebraically with a graphed quadratic function. A portion of the graph of a quadratic function $f(x)$ is shown in the xy-plane. Selected values of a linear function $g(x)$ are shown in the table. $ \frac{f(x)}{e_{x,y}} = \frac{f(x)}{e_{x,y}} = \frac{\frac{x}{e_{x,y}} - \frac{g(x)}{e_{x,y}}}{\frac{1}{e_{x,y}} - \frac{1}{e_{x,y}} - \frac{1}{1}}{\frac{2}{e_{x,y}} - \frac{1}{1}} $ For each comparison below, use the dropdown menu to select a symbol that correctly indicates the relationship between the first and the second quantity.	CFU Questions:	Identify the similarities and differences between the two polynomial functions below: A.) $f(x) = -2x^2 - 2x + 4$ $f(x) = -2x^2 - 2x + 4$ B.) TABLE Quadratic (x -2,1,3,4) (f(x) -8,-5,7,16)
Examples:	First QuantityComparisonSecond QuantityThe y-coordinate of the y-intercept $f(x)$ The y-coordinate of the y-intercept $g(x)$ $f(3)$ $g(3)$		x y 1 15 2 25 100 100 100 100 100 100 100 10
Non-Examples:	maximum, minimum, intercepts and end behavior in your description.	Resources: http://www.illustrativemath	nematics.org/illustrations/1279

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

Concept Development

Concept: domain

Definition: the set of "input" or argument values for which the function is defined

Critical Attributes: the set of "input"

Shared Attributes:

Non-Critical Attributes:

Examples: Domain for a maximum area function is always positive

Non-Examples:

Possible CFU Questions: Using real world applications explain why or why not the domain of this function _____ makes sense?

Skill Development

Skill: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes

Procedural or Declarative: procedural

Process, Procedure, Steps: Use different type of graphs to represent real world applications.

Details:

Possible CFU' Questions: Identify the domain of the graph

F.BF.3

Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Concept Development		Skill Development	
Concept:	Transformations of parabolas.	Skill:	Graph quadratic functions in standard for intercept form, and vertex form
	the operation of changing (as by rotation or mapping) one configuration or expression into another in accordance with a mathematical rule; <i>especially</i> : a change of variables or	What do I teach?:	Declarative
Definition:	coordinates in which a function of new variables or coordinates is substituted for each original variable or coordinate		Use technology to produce a variety of gra to investigate the effects of <i>k</i> on the functi and have students find patterns that can b
Critical Attributes:	type of function stays same (quadratic, etc)	How do I teach?:	generalized to describe transformations of functions.
Shared Attributes:	location of k always has same transformation effect on ANY kind of function (exponential, absolute value,)		Describe the graphical differences betwee
Non-Critical Attributes:	f(x) could be g(x) or y	CFU Questions:	f(x) = 2(x+3)+1 and $g(x)=5(x-1)+2$
Examples:	Use the equation to answer the question y = f(x + A) + B Describe how each parameter (A and B) affects the graph of the function $y = x^2$. Include specific information about how positive and negative values affect the graph for each parameter in your answer.		
Non-Examples:	if k=1 or zero: y=1x+0 has no transformation		
Resources:	http://ccssmath.org/?page_id=2195		

Integrated Math 3 Course Standard and Resource Guide Quadratics, Polynomials, and Other Functions

UNIT 3 : Higher Order Polynomials

Overview

Solving and Graphing higher order polynomials

Priority standard

A. APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Supporting standards

A.APR.5

(+) Know and apply the Binomial Theorem for the expansion of $(x + y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.

ncept Development		Skill Development	
Concept:	Binomial Theorem and Pascal's Triangle	Skill:	Expanding binomials $(x + y)^n$
Definition:	see Alg 2 Text section 10.2, p 693	What do I teach?:	Binomial Theorem and Pascal's triangle
	The numbers in the n^{th} row of the Pascal's Triangle are the coefficients of the Binomial Expansion of $(x + y)^n$. The number of terms is always one more than the degree of the	How do I teach?:	Emphasize importance of raising each term to the appropriate power, as in $(2x^2 - 3)^4$, students often forget to raise the $2x^2$ to the correct power, and make errors with the negative sign raised to odd/even powers.
Critical Attributes:	binomial.		Expand $(x+2)^5$
Shared Attributes:	terms, binomial	CFU Questions:	Explain how to use the Pascal's Triangle in expanding $(x + 2)^5$ versus $(3x + 2)^5$.
Non-Critical Attributes:			
Examples:	Since the 4th row of Pascal's Triangle is 1,4,6,4,1, then we can QUICKLY write: $(a+b)^4 = 1a^4b^0 + 4a^3b^1 + 6a^2b^2 + 4a^1b^3 + 1a^0b^4$		
Non-Examples:	You cannot use this theorem on trinomials such as $(x + y + 4)^4$, it only works on Binomials		
Resources:	See Alg 2 text section 5.4 p 354, Pascal's Triangle to get $(a+b)^n$ section 10.2 p 693		

Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Concept Development		Skill Development	
	Operations of Addition, Subtraction, Multiplication on	Skill:	Add, subtract, multiply polynomials.
Concept:	Polynomials. "Closure" applies.	What do I teach?:	Declarative and Procedural
Definition:	Closure: Like terms when you add, subtract, or multiply polynomials, you get another polynomial.	How do I teach?:	Identify and combine like terms.
Critical Attributes:	Combining "like terms," using distributive property.		1. Simplify: $(x^3 + 5x^2 + 3x - 2) + (x^4 - 3x^3)$
Shared Attributes:	Other functions, such as radicals, can also have like terms. $x^{1/2} + x^{1/2}$		$ \begin{pmatrix} x^{3} + 5x^{2} + 3x - 2 \end{pmatrix} + \begin{pmatrix} x^{4} - 3x^{3} \\ x^{3} + 5x^{2} + 3x - 2 \end{pmatrix} - \begin{pmatrix} x^{4} - 3x^{3} \\ x^{3} + 5x^{2} + 3x - 2 \end{pmatrix} = \begin{pmatrix} x^{4} - 3x^{3} \\ x^{3} + 5x^{2} + 3x - 2 \end{pmatrix} $
Non-Critical Attributes:	Order in which you list terms (ascending, descending)		$(x^3+5x^2+3x-2)(x^4-3x^3+$
	$x^{2} + 4x^{2} = (4x^{2} + 5x + 6)(3x^{2} + 5x)(3x + 2) =$		 When you subtract two polynomi (sometimes, always, never) get anot polynomial.
Examples:	$x^2 + y^2$ are not like terms $\begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ is NOT		3. Circle all of the following operati
Non-Examples:	$x^{2} + y^{2}$ are not like terms $(x^{3})(x^{3})$ is NOT x^{9} , (x+3)(x+3) is not $x^{2} + 9$	CFU Questions:	closed operations on the set of polyr addition, subtraction, multiplication, polynomials.
Resources:	http://ccssmath.org/?page_id=2103, Alg 2 Textbook section 5.3 p 346-352.		

Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x - a is p(a), so p(a) = 0 if and only if (x - a) is a factor of p(x).

Concept Development		Skill Development
Concept:	Remainder Theorem	Skill:
D. C. Y.	If $p(x)$ is a polynomial and r is the remainder when $p(x)$ is divided by $(x-a)$, then $r = p(a)$. Also, if the remainder is zero, then $(x-a)$ is a factor of	What do I teach?:
Definition: Critical Attributes:	 p(x). Polynomials must be in descending order with zero coefficients, ex: 3x² + 0x + 5. Know that, in rational expressions, the denominator is the divisor. 	
Shared Attributes: Non-Critical Attributes:	Like division of whole numbers, polynomial division can have remainders (which are useful in graphing and in finding roots).	How do I teach?:
Examples:	Divide $(x^3 + 5x^2 - 7x + 2)$ by $x - 2$ using long division, noting that the remainder equals f(2)	
Non-Examples:	Can't use remainder theorem with higher order divisors, like $x^2 - 4$	
	http://ccssmath.org/?page_id=2105	
Resources:	Alg 2 Textbook section 5.5 p 362-368	CFU Questions:

Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Concept Development		Skill Development	
	Division of polynomials gives us a tool for finding	Skill:	Plot rough graph.
Concept:	roots, and vice versa.	What do I teach?:	Procedural
Definition:	Each factor gives us an x-intercept, when set equal to zero.		Plot all roots on x ax multiple roots of odd
Critical Attributes:	if f(x)=0, then x is a real zero for the polynomial	How do I teach?:	returning in same dir values of y at relative
Shared Attributes:	one or more zeros may exist		1. Sketch a graph of
Non-Critical Attributes:	solutions that are imaginary may exist but are not used at this point	CFU Questions:	2. Identify the factors
	Sketch: $f(x) = (x + 5)(x - 1)(x - 3)$. Zeros are at x=-5, +1, +3, with function going up on right, down on left end.		
Examples:	Sketch: $f(x) = -(x+2)^{3}(x-3)$. Zeros are at x=-2, +3, with function going down on right, up on left end. Function goes through the x axis at triple root x=-2.		
Non-Examples:	If $(x-2)(x+3) = 5$, zeros are not $x = 2$ and $x = -3$. (The right side of the equation MUST be zero!)		
Resources:	Alg 2 text section 5.4 p 353-359, section 5.7 p 379-386, section 5.8 p 387-392, and PreCalc text for end-behavior, multiple roots, etc. http://ccssmath.org/?page_id=2107		

Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.

Concept Development		Skill Development	
	"Equivalent Expressions" is the general concept. This is a specific set of cases which is re-writing	Skill:	Factoring and simplifying rational expressions and long div polynomials.
Concept:	rational expressions using division or factoring to find quotient and remainder.	What do I teach?:	Procedural
Definition:	(See objective & standard above.)		When given a rational expression, you can simplify it by us long (or synthetic division), where the denominator become divisor. Any remainder is written as the numerator over the
Critical Attributes:	quotient, divisor, remainder (which might include r(x)=0)	How do I teach?:	divisor.
Shared Attributes:	divisor is always the denominator of the remainder.		Divide: $\frac{4x^3 + x^2 - 3x + 7}{x - 1}$. To solve it, rewrite as:
Non-Critical Attributes:	remainder could be zero		x-1 $\overline{) 4x^3 + x^2 - 3x} + 7 = 4x^2 + 5x + 2 + \frac{9}{x-1}$
	Rewrite $\frac{x^2+2x-4}{x-2}$.	CFU Questions:	
Examples:	Solution by inspection: $x + 4 + \frac{4}{x-2}$		
Non-Examples:	$\frac{2x-4}{x^2-2}$		
Resources:	Alg 2 Textbook section 5.5 p 362-368 http://ccssmath.org/?page_id=2113		

N.CN.8

(+) Extend polynomial identities to the complex numbers.

Concept Development		Skill Development	
2	Completely factoring polynomials to include	Skill:	Factor Polynomial
Concept:	imaginary roots.	What do I teach?:	Procedural
Definition:	Complete linear factorization: in every factor, x has degree of one.	How do I teach?:	Polynomials need to be factored co include imaginary roots
Critical Attributes:	Imaginary/Complex factors always occur in conjugate pairs, ex: (x+2i)(x-2i).		Determine linear factors of $x^2 + 16$
Shared Attributes:	Real-factored polynomials.	CFU Questions:	complex number system.
Non-Critical Attributes:	Greatest Common Factor		
Examples:	$x^{3} + 5x^{2} + 8x + 3 = (x + 3)(x - (-1 + i))(x - (-1 - i))$		
Non-Examples:	x^{2} + 4 is not a linear factor, (x+2i)(x-2i) is completely factored.		
Resources:	(fyi: from Pre-Calc text, not in Alg 2 text). See framework. http://ccssmath.org/?page_id=2103,		

N.CN.9

(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

Concept:	Fundamental Theorem of Algebra (FTA) and its Corollary		
	, , , ,		Show that the FTA is true for quadratic equations. Find all solutions (zeros) for high
	If f(x) is a polynomial of degree n (n>0) then f(x)=0 has at least one solution in the set of complex numbers.	Skill:	order equations.
Definition:	Corollary: number of solutions equals the degree, n.	What do I teach?:	Procedural
Critical Attributes:	The degree of polynomial will match the number of linear factors.	How do I teach?:	Factor polynomial to product of prime binomials/trinomials and use Zero Product Property
Shared Attributes:	Find all zeros of polynomials from linear factorization		Use the Fundamental Theorem of Algebra to
Non-Critical Attributes:	Some solutions could be real or imaginary. or a combination of both.		help identify the roots of the polynomials: $x^{3} - 2x^{2} + 4x - 8$
	How many solutions does the equation $\frac{3}{2} + \frac{5}{2} + \frac{2}{2} + \frac{1}{2} + \frac{2}{2} + \frac{1}{2} + \frac{2}{2} + \frac{1}{2} + \frac{1}{2}$	6511 Q	$ \begin{vmatrix} x^{3} + x^{2} - x - 1 \\ x^{4} + x^{3} + 4x^{2} - 4x \end{vmatrix} $
Examples:	$x^{3} + 5x^{2} + 4x + 20 = 0$ have? Justify your answer.	CFU Questions:	x + x + 4x = 4x
	You can't use FTA to find solutions to non-polynomials,		
Non-Examples:	like $x^{\frac{1}{2}} - 2^{x} = 0$.		
	http://ccssmath.org/?page_id=2046		
Resources:	Alg 2 text section 5.7 p 379-386		

A.SSE.2

Use the structure of an expression to identify ways to rewrite it.

Concept Development			Skill Development
Concept:	Structure of Expressions		Skill:
	Writing equivalent expressions, specifically	1	What do I teach?:
Definition:	completely factoring polynomials, using previously-learned techniques.		How do I teach?:
Critical Attributes:	Must be same as the original expression.		
Shared Attributes:	Factor	1	
Non-Critical Attributes:	Type of Polynomial		
	$x^{4} - y^{4} = (x^{2})^{2} - (y^{2})^{2}$ $x^{2} - 5 = (x - \sqrt{5})(x + \sqrt{5})$		
Examples:	$x^{2}-5 = (x-\sqrt{5})(x+\sqrt{5})$		CFU Questions:
Non-Examples:	$u^2 + 4u + 3$		
	http://ccssmath.org/?page_id=2091		
Resources:	Alg 2 text, section 5.7. Also see PreCalculus text.		

Integrated Math 3 Course Standard and Resource Guide

Quadratics, Polynomials, and Other Functions UNIT 4 : Rational

|--|

Priority standard

F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases

• (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

Concept Developmen	t	Skill Development	
Concept:	Rational Functions (graphing)	Chill.	Locate key features of rational functions and graph
Definition:	A function of form $f(x) = \frac{p(x)}{q(x)}$ where p and q are polynomials, and q(x) is not equal to zero.	Skill: What do I teach?:	them. Declarative (follow short procedures to describe graphs)
Critical Attributes:	Location of vertical and horizontal asymptotes. Vertical and horizontal translations of parent function $f(x) = \frac{1}{x}$, such as $y = \frac{1}{(x+4)}$ is translated left 4 units.	How do I teach?:	Find vertical asymptotes (set factors in denomina equal to zero), Find horizontal asymptotes by comparing degree numerator and denominator.
Non-Critical Attributes: Examples:	Negative or positive numerator Graph $y = \frac{x-2}{x+3}$ and identify vertical and horizontal asymptotes and any zeros. Explain end behavior.		Does this function have horizontal asymptotes: $f(x) = \frac{(x^2-2x-15)}{(x^2-9)}$? How do you know?
Non-Examples:	Graph $y = \sqrt{x-2}$ (this is not a rational function) http://ccssmath.org/?page_id=2173	CFU Questions:	Does the function have a vertical asymptote at $x = -3$? Explain.

Supporting standards

F.BF.3

Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Concept Development	:		Skill Development
Concept:	Transformations of rational functions.	_	- Skill:
Definition:	transformations include translations (vertical/horizontal shifts), stretching		What do I teach?:
Critical Attributes:	has a numerator and a denominator.	_	What do r teach?.
Shared Attributes:	location of k always has same transformation effect on ANY kind of function (exponential, absolute value,)		How do I teach?:
Non-Critical Attributes:	f(x) could be g(x) or y	-	
Examples:	$y = \frac{1}{(x+3)} - 4$ is $y = \frac{1}{x}$ shifted 3 left (horizontal shift) and down 4 (vertical shift).		CFU Questions:
Non-Examples:	if k=1 or zero: $y = \frac{1}{(x+0)}$ has no transformation		
Resources:	http://ccssmath.org/?page_id=2195 Alg 2 text 8.2, 8.3	1	

(+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions

Concept Development		Skill Development
Concept:	Operations of Addition, Subtraction, Multiplication, Division on Rational expressions. "Closure" applies when denominator is nonzero.	Skill: What do I teach?:
Definition:	Closure: when you add, subtract, or multiply, divide rational expressions, you get another rational expression.	How do I teach?:
Critical Attributes:	Use same properties as fractions.	
Shared Attributes:	Other functions, such as radicals, can also have like terms. $x^{\frac{1}{2}} + x^{\frac{1}{2}}$	
Non-Critical Attributes:	Negative or positive numerator	CFU Questions:
	$\frac{1}{x} + \frac{3}{(2-x)} = -?$ $\frac{1}{x} - \frac{3}{(2-x)} = -?$	
Examples:	$\frac{x^{2}y^{3}}{4x^{8}y^{2}} = \underline{?} \qquad \frac{x^{2}-4}{x^{2}+4x+4} = \underline{?}$	
	$x^2 + y^2$ are not like terms,	
	$(x^3)(x^3)$ is NOT x^9	
Non-Examples:	$(x+3)(x+3)$ is not $x^2 + 9$	
Resources:	http://ccssmath.org/?page_id=2115 See Alg 2 Text sections 8.4, 8.5	

do I teach?: Compare to operations with regular fractions. Perform the operation on the rational expressions. 1. $\frac{x+1}{x^2+4x+4} - \frac{6}{x^2-4}$
t do I teach?: Procedural do I teach?: Compare to operations with regular fractions. Perform the operation on the rational expressions. 1. $\frac{x+1}{x^2+4x+4} - \frac{6}{x^2-4}$
do I teach?: Compare to operations with regular fractions. Perform the operation on the rational expressions. 1. $\frac{x+1}{x^2+4x+4} - \frac{6}{x^2-4}$
Perform the operation on the rational expressions. 1. $\frac{x+1}{x^2+4x+4} - \frac{6}{x^2-4}$
1. $\frac{x+1}{x^2+4x+4} - \frac{6}{x^2-4}$
Questions: 2. $\frac{6x^2 + x - 15}{4x^2} + \frac{2x + 5}{2x}$

A.REI.2

Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Concept Developmen	t	Skill Development	
Concept:	Extraneous solutions	Skill:	Solve
	A solution that emerges from the process of solving	What do I teach?:	Pro
Definition:	the problem but is not a valid solution to the original problem.		Teo dei
Critical Attributes:	Solution that results in denominator equal to zero	How do I teach?:	nee
Shared Attributes:		CFU Questions:	Alg
Non-Critical Attributes:	You might have zero, one, or many solutions.	_	
	Solve $\frac{6}{(x-3)} = \frac{8x^2}{(x^2-9)} - \frac{4x}{(x+3)}$ and identify all		
	solutions including extraneous solutions if any and explain.		
	Ans: $x = \frac{3}{2}$ is solution, $x = -3$ is		
Examples:	extraneous. (see p 591)		
Non-Examples:	$\frac{x-4}{5} + \frac{x-3}{6} = 1$, x=4 and x=3 are not solutions.		
Resources:	http://ccssmath.org/?page_id=2127 See Alg 2 text section 8.6 p 589		

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

(Include rational, square root, cube root; emphasize selection of appropriate models)

Finding key features of models of relationships. A function is a relationship between a set of INPUTS and a set of permissible OUTPUTS with the property that each input is related to exactly ONE output.	Skill:	Interpret key features from tables and graphs, and graph from verbal description Declarative: Key features may include intercepts, intervals where function is
INPUTS and a set of permissible OUTPUTS with the property that each input is related to	Skill:	Declarative: Key features may include
exactly ONE output.		The results intervals where function is
Two quantities, like time and value or time and population growth	What do I teach?:	increasing/decreasing, positive or negative relative min/max values, symmetries, end behavior, periodicity,
Every function can be represented in four ways: algebraically, graphically, numerically (data tables). and verbally.		Have students label independent and dependent variables on axis, plot points, interpret information from graphs, write
Type of function (polynomial, exponential, etc.)	How do I teach?:	summaries of data
(See influenza epidemic example in resources below.)		The function $C(t) = \frac{5t}{0.01t^2+3.3}$ describes concentration of a drug in the bloodstream
		over time. Graph the function. identify and
http://www.illustrativemathematics.org/standard s/hs Alg 2 textbook section 6.3, 6.4, 7.1, 7.2	CFU Questions:	interpret the intercepts; intervals where th function is increasing, decreasing, positiv or negative; relative maximums and minimums; symmetries; and end behavior
	and population growth Every function can be represented in four ways: algebraically, graphically, numerically (data tables). and verbally. Type of function (polynomial, exponential, etc.) (See influenza epidemic example in resources below.) <u>http://www.illustrativemathematics.org/standard</u> <u>s/hs</u>	and population growth What do I teach?: Every function can be represented in four ways: algebraically, graphically, numerically (data tables). and verbally. Type of function (polynomial, exponential, etc.) How do I teach?: (See influenza epidemic example in resources below.) How do I teach?: http://www.illustrativemathematics.org/standard s/hs CFU Questions:

Integrated Math 3 Course Standard and Resource Guide Quadratics, Polynomials, and Other Functions

UNIT 5 : Exploring other functions

	Solving radical equations, graph parent functions with transformations, and solve system of equations
	Solve System of equations

Priority standard

A.REI.2

Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

• radical

Concept Development		Skill Development	
Concept:	Extraneous solutions	Skill:	Solve radical equations.
Definition:	A solution that emerges from the process of solving the problem but is not a valid solution to the original problem.	What do I teach?:	Procedural
Critical Attributes:	Radicals with even roots (fraction exponents with even denominators) have domain limitations (radicand must be non-negative).		 Analogous to solving linear equations, need to be aware of extraneous solution Techniques depend on problem: raise sides of equation to the reciprocal of e
Shared Attributes:		Herry de Lite en bQr	Always check every apparent solution
Non-Critical Attributes:	You might have zero, one, or many solutions.	How do I teach?:	ORIGINAL equation
	p 454 Ex 5 Solve: $x + 1 = (7x + 15)^{\frac{1}{2}}$ has one extraneous solution.		Solve and eliminate extraneous solutions if the $3x^{\frac{3}{2}} = 375$
	p 457 #44. Explain how you can tell that $(x + 4)^{\frac{1}{2}} = -5$ has no solutions.	CFU Questions:	$x - \frac{1}{2} = \sqrt{\frac{1}{4}x}$
Examples:	p 454 Ex 4 Solve $(x+2)^{\frac{3}{4}} - 1 = 7$.		
Non-Examples:	See p 456 #32, #33		
Resources:	http://ccssmath.org/?page_id=2127 See Alg 2 text section 6.6 p 452		

F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

• Graph_____.

- o square root
- o cube root
- piecewise-defined functions {maybe including step functions?}
- o absolute value functions.

Concept Development		Skill Development	
Concept:	Rough sketch (of various non-linear functions)	Skill:	Graphing the remaining non-linear functions
Definition:	Rough sketch is a drawing that shows the main features of a graph	What do I teach?:	Procedural (plotting points, rough sketch) and Declarative (recognizing and describing the transformation)
Critical Attributes:	Critical points		,
Shared Attributes:	Critical points could be zeros; Symmetry about axis of symmetry (one side could be y-intercept, for example)	How do I teach?:	Parent functions and basic transformations (with without calculators at this time).
Non-Critical Attributes:			Graph the function and identify key features: g(x) = x + 3 - 2
Examples:	$y = x , g(x) = x^{\frac{1}{2}}, f(x) = x^{\frac{1}{3}}, h(x)=int(x)$	CFU Questions:	compare and contrast the graphs of $h(x) = -x^{1/3}$ $f(x) = x^{1/3}$
Non-Examples:	It is not necessary to plot several points once the general behavior of the graph is determined.		
Resources:	http://ccssmath.org/?page_id=2165 p123 Section 2.7, p 446 section 6.5, see pre Calc book for integer and step functions		

F.BF.3

Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Concept Development		Skill Development	
Concept:	Transformations of remaining non-linear functions.		Graphing using transform
Definition:	transformations include translations (vertical/horizontal shifts) and	Skill: What do I teach?:	transformation by comparin
	dilations (stretching)	vvnat do i teach?:	Declarative and procedural
Critical Attributes:	recognizing parent function shapes of new functions: square root, cube root, abs value, piece-wise.		Beginning with the parent fur function (using technology)
Shared Attributes:	location of k always has same transformation effect on ANY kind of function (exponential, quadratic value,)	How do I teach?:	transformation and state what given two graphs.
Non-Critical Attributes:			Describe the graphical relation functions.
	y = 3 x+1 - 5	CFU Questions:	1. $t(x) = 2 x+1 $ and $v(x) = \frac{1}{2}$ 2. $h(x) = \sqrt{x+1}$ and $k(x) = \frac{1}{2}$
	$g(x) = -2(x-2)^{\frac{1}{2}}$		- n(x) (x - 1 and n(x) _
	$f(x) = (x+2)^{\frac{1}{2}} - 2$		
	h(x) = [[x - 2]]		
Examples:	h(x)=int(x-2)		
Non-Examples:	 Given f(x) + k and f(x+k), if k=0, then no transformation exists. Given k f(x) and f(kx), if k=1, then no transformation exists. 		
Resources:	p123 Section 2.7, p 446 section 6.5, see pre Calc book for integer and step functions		

Teaching Note: This standard (A.REI.11) could be moved to Quarter 3 (wk 8 & 9) in modeling unit.

A.REI.11

Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Concept Development		Skill Development	
Concept:	Solving Systems of equations		Solving two equations for possible intersections and finding them
	On a graph of two functions, the intersection(s), if any exist, are the	Skill:	algebraically.
Definition:	solutions to a system of equations.	What do I teach?:	Procedural
Critical Attributes:	f(x) = g(x)		1. graphing calculator or other technology
Shared Attributes:	systems of inequalities	How do I teach?:	2. substitution, elimination method for solving systems
Non-Critical Attributes:	a system may have no, one, or		1. Draw sketches where a quadrati
Examples:	Given two equations, identify the type of function, determine the possibilities for intersections, and then graph to confirm your predicted solution(s).		function at 4 points, 3, 2, 1, 0. 2. How many liters of a 70% alcohol solution must be added to 50L of a 40% alcohol solution to produce a 50% alcohol solution?
Non-Examples:	avoid the common error: if an ordered pair satisfies one equation, it may not represent a solution to the system since it may not be a solution to the other equations in the system		3. Given the following equations determine the x value that results in an equal output for both functions. f(x) = 3x - 2
Resources:	http://ccssmath.org/?page_id=2149	CFU Questions:	$g(x) = (x + 3)^2 - 1$

Integrated Math 3 Course Standard and Resource Guide

Mathematical Modeling

<u>UNIT 6</u>

Overview

Inverse Functions

F.BF.1 Write a function that describes a relationship between two quantities.

b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model."

(+) c – Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.

Concept Development			Skill Development	
Concept:	Function		Skill:	Combining function with arithmetic
Definition	A relation between a set of inputs and a set of outputs with the property that each input is related to exactly one output.		Procedural or Declarative:	operations Procedural
Critical Attributes:	Variables must be defined		Process, Procedure,	When working through word problems show
Shared Attributes:	functions, relationships		Steps: Possible CFU' Questions:	students how to combine to functions with addition, subtraction, multiplication, and
Non-Critical Attributes:	the particular variable chosen to represent a quantity may vary			division to form another function.
Examples:	3x + 4y = 8			The total revenue for a company is found by multiplying the price per unit by the number o units sold minus the production cost. The
Non-Examples:	x = 10			price per unit is modeled by
Possible CFU Questions:	Is x = 5 a function? Is y = 6 a function?		$p(n) = -0.5n^2 + 6$, where <i>n</i> represents the number of units sold. Production cost is	
Resources:	http://ccssmath.org/?page_id=2189			modeled by $c(n) = 3n+7$. Write the revenue function.
				1

F.BF.3

Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Concept Development		Skill Development	
	Transformations of exponential functions. $v = a b^{cx-h} + k$	Skill:	Transform exponential functions.
Concept:		What do I teach?:	Procedural (graphing) and Decla (describing)
Definition:	transformations include translations (vertical/horizontal shifts), dilations	What do rteach?.	
Critical Attributes:	exponential function	How do I teach?:	Suggest using tables and electro (graphing calculator) to see trans relationships.
Shared Attributes:	location of k always has same transformation effect on ANY kind of function (exponential, absolute value,)		Describe the graphical relationsh the two functions. $f(x) = 2^{x} + 7$ and $g(x) = 2^{x+1}$
Non-Critical Attributes:	f(x) could be g(x) or y	CFU Questions:	f(x) = 2 if $f(x) = 2$ if
Examples:	$y = e^{x+3} - 4$ is $y = e^x$ shifted 3 left (horizontal shift) and down 4 (vertical shift).		
Non-Examples:	if $k = 1$ or zero: $y = 3^{-1x+0}$ has no transformation		
Resources:	http://ccssmath.org/?page_id=2195 Alg 2 text 7.2, 7.1		

F. BF. 4 Find inverse functions. and:

- a. solve an equation in the form f(x)=c for a simple function f that has an inverse and write an expression for the inverse
- (+) b Verify by composition that one function is the inverse of another.
- (+) c Read values of an inverse function from a graph or a table, given that the function has an inverse.

Concept Developm	ent	Skill Development	
Concept:	inverse function	Skill:	
	An inverse relation interchanges the input and output	What do I teach?:	
	values of the original relation. If both the original relation and the inverse relation are functions, then the two functions are called inverse functions. Functions f and g are inverses of each other provided	How do I teach?:	
Definition:	f(g(x))=g(f(x))=x. The function g is denoted by f ⁻¹ is read as "f inverse."		
Critical Attributes:	one to one		
Shared Attributes:	some functions can be inverse functions with a constrained domain	CFU Questions:	
Non-Critical Attributes:	function type or degree can vary	CFO Questions.	
Examples:	$f(x)=3x+4$ has an inverse of $f^{-1}(x) = \frac{x-4}{3}$		
Non-Examples:	$f^{-1}(x)$ does not equal $\frac{1}{f(x)}$		
Resources:	http://ccssmath.org/?page_id=2199 Alg 2 text section 6.4, and 7.4 for logs as inverse of exponentials; http://www.illustrativemathematics.org/standards/hs		

F.IF.4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity

(Include rational, square root, cube root; emphasize selection of appropriate models)

Concept Development		Skill Development		
Concept:	Finding key features of models of relationships.		Interpret key features from tables and	
Definition:	A function is a relationship between a set of INPUTS and a set of permissible OUTPUTS with the property that each input is related to exactly ONE output.	Skill: What do I teach?:	Declarative: Key features may i intercepts, intervals where function	
Critical Attributes:	Two quantities, like time and value or time and population growth		increasing/decreasing, positive or negative relative min/max values, symmetries, end behavior, periodicity,	
Shared Attributes:	Every function can be represented in four ways: algebraically, graphically, numerically (data tables). and verbally.		Have students label independent and dependent variables on axis, plot points, interpret information from graphs, write	
Non-Critical Attributes:	Type of function (polynomial, exponential, etc.)	How do I teach?:	summaries of data	
Examples:	(See influenza epidemic example in resources below.)		The function $C(t) = \frac{5t}{0.01t^2+3.3}$ describes the concentration of a drug in the bloodstream	
Non-Examples:			over time. Graph the function. identify and interpret the intercepts; intervals where the	
Resources:	http://www.illustrativemathematics.org/standard s/hs Alg 2 textbook section 6.3, 6.4, 7.1, 7.2 http://ccssmath.org/?page_id=2159	CFU Questions:	function is increasing, decreasing, positive or negative; relative maximums and minimums; symmetries; and end behavior	

F.IF.7 (Unit 4, Part1)

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases

• Graph logarithmic functions, showing intercepts and end behavior.

Concept Development			Skill Development
Concept:	Graphing Logarithmic Function		Skill:
	Rough sketch is a general approximation of what the		What do I teach?:
	graph looks like. A logarithm is defined as: Let <i>b</i> and <i>y</i> be positive numbers with $b \neq 1$. The logarithm of <i>y</i> with base <i>b</i> is denoted by $log_{b}y = x$ if		How do I teach?:
Definition:	and only if $b^x = y$. The expression $\log_b y$ is read as "log base b of y."		
Critical Attributes:	Rough sketch of critical points: x- or y-intercept and vertical or horizontal asymptote.	CFU Questions:	CFU Questions:
Shared Attributes:	x-intercepts.		
Non-Critical Attributes:	Base could be any real number greater than 0.		
Examples:	Rate of growth or decay. $y = \log_{3} x, g(x) = \log_{\frac{1}{2}}(x - 3) + 2, h(t) = ln(t)$		
Non-Examples:	using too few or too many points		
Resources:	See Alg 2 text sections 7.4 https://docs.google.com/a/muhsd.org/document/d/1QB2 CONSoTZvfxHTd1zN97KLhfiJHcMN4HpFrCfV2oNE/edit		

F. BF. 5 (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.

Concept Development		Skill Development	
Concept:	logarithm	Skill:	Understand inverse relationship of exponential and logarithmic func
	A function $y = \log_b x$, where <i>b</i> is any number such that	What do I teach?:	Declarative
Definition:	$b > 0$, $b \neq 1$, and $x > 0$, $y = \log_b x$ is equivalent to $x = b^y$		You can graph exponential and logarithmic functions and show th of symmetry, plot points and switt them, or calculate <i>f</i> (<i>f</i> ¹ (<i>x</i>)) and pro-
understanding of the relation	n application of the students' onship between logarithms and	How do I teach?:	it equals x. All of those should be enough evidence to support the f that exponentials and logarithms inverses.
exponents.		CFU Questions:	How do you know that two function inverses of each other?

F.LE.4 *

For exponential models, express as a logarithm the solution to $(ab)^{ct} = d$ where *a*, *c*, and *d* are numbers and the base *b* is 2, 10, or *e*; evaluate the logarithm using technology.

Concept Development		Skill Development
Concept:	Logarithms and exponents are inverse functions.	Skill Development
	Let <i>b</i> and <i>y</i> be positive numbers with $b \neq 1$. The logarithm of <i>y</i> with base <i>b</i> is	Skill:
Definition:	denoted by $log_b y = x$ if and only if $b^x = y$. The expression $log_b y$ is read as "log base b of y."	
Critical Attributes:	base <i>b</i> is positive real number such that $b \neq 1$	What do I teach?:
Shared Attributes:	variables and constants, positive values	
Non-Critical Attributes:		
	Newton's Law of Cooling: $T = (T_0 - T_R)e^{-rt} + T_R$,	How do I teach?:
	Defined as initial temperature T_0 , temperature T after t minutes, where T_R is the surrounding temperature and r is the substance's cooling rate	
	http://www.illustrativemathematics.org/sta	CFU Questions:
Examples:	ndards/hs	
	http://ccssmath.org/?page_id=2221	
Resources:	Alg 2 text section 7.5, 7.6	

F.LE.4.1

Prove simple laws of logarithms. CA *

Concept Development			Skill Development	
Concept:	Logarithms and exponents are inverse functions.		Skill:	Prove simple laws of logarithms.
Definition:	Let <i>b</i> and <i>y</i> be positive numbers with $b \neq 1$. The logarithm of <i>y</i> with base <i>b</i> is denoted by $log_{b}y = x$ if and only if $b^{x} = y$. The expression $log_{b}y$ is read as "log base <i>b</i> of <i>y</i> ."			$\log A - \log B = \log \frac{A}{B}$ $\log A - \log B = \log \frac{A}{B}$
Critical Attributes:	base <i>b</i> is positive real number such that $b \neq 1$		What do I teach?:	$\log A^n = n \log A$ Use the properties of exponents to help th
Shared Attributes:	variables and constants, positive values			students understand and/or use technolog
Non-Critical Attributes:		How	How do I teach?:	to investigate some example to show the properties are equal.
Examples:	Newton's Law of Cooling: $T = (T_0 - T_R)e^{-rt} + T_R$, Defined as initial temperature T_0 , temperature T after t minutes, where T_R is the surrounding temperature and r is the substance's cooling rate <u>http://www.illustrativemathematics.org/standards/hs</u> <u>http://ccssmath.org/?page_id=2221</u>			Simplify $3 \log x - \log x^2$. 1. 2. Condense to express as a single logarithm: $\log_3(x+5) + \log_3(x-5) - 4 \log_3(2)$ 3. Expand to express as a multiple of logarithms: $\ln\left(\frac{(x+5)^6(x^2-4)^7}{(x^3-5)^8}\right)$
Resources:	Alg 2 text section 7.5, 7.6		CFU Questions:	

F.LE.4.2

Use the definition of logarithms to translate between logarithms in any base. CA *

Concept Development		Skill Development	
Concept:	Logarithms and exponents are inverse functions.		Use logarithms to solve exponential equations. Use exponents to solve
Definition:	Let <i>b</i> and <i>y</i> be positive numbers with $b \neq 1$. The logarithm of <i>y</i> with base <i>b</i> is denoted by $log_b y = x$ if and only if $b^x = y$. The expression $log_b y$ is read as "log base <i>b</i> of <i>y</i> ."	Skill: What do I teach?:	logarithms. Use equivalence of logs and exponents (p 515, 517), properties of exponents (p 330) and of logarithms (p 499, 507, 508). Teach bases 2, 10, and e.
Critical Attributes:	base <i>b</i> is positive real number such that $b \neq 1$		Show examples that apply the rules of logs
Shared Attributes:	variables and constants, positive values		Find x. $log_3 8 = x$ Rewrite as $8 = 3^x$
Non-Critical Attributes:			Now take log of both sides of eq:
	Newton's Law of Cooling: $T = (T_0 - T_R)e^{-rt} + T_R$, Defined as initial temperature T_0 , temperature T after t minutes, where T_R is the surrounding temperature and r is the substance's cooling rate	How do I teach?:	log = log x Apply prop of log: $log = x log $ Isolate variable x: $\frac{log 8}{log 3} = x$ Then conclude: $\frac{log 8}{log 3} = x = log $
Examples:	http://www.illustrativemathematics.org/sta ndards/hs http://ccssmath.org/?page_id=2221		 Find log 230 using a calculator or table. Graphene problem <u>https://www.illustrativemathematics.org/illustrativemathemathemathemathemathemathemathemath</u>
Resources:	Alg 2 text section 7.5, 7.6	CFU Questions:	strations/1569

F.LE.4.3

Understand and use the properties of logarithms to simplify logarithmic numeric expressions and to identify their approximate values. CA *

Concept Development		Skill Developme
Concept:	Logarithms and exponents are inverse functions.	Skill:
	Let <i>b</i> and <i>y</i> be positive numbers with	What do I teach?:
	$b \neq 1$. The logarithm of y with base b is denoted by $log_{b}y = x$ if and only if	How do I teach?:
Definition:	$b^x = y$. The expression $log_b y$ is read as "log base b of y ."	CFU Questions:
Critical Attributes:	base <i>b</i> is positive real number such that $b \neq 1$	
Shared Attributes:	variables and constants, positive values	
Non-Critical Attributes:		
	Newton's Law of Cooling: $T = (T_0 - T_R)e^{-rt} + T_R$, Defined as initial temperature T_0 , temperature T after t minutes, where T_R is the surrounding temperature and r is the substance's cooling rate	
Examples:	http://www.illustrativemathematics.org/sta ndards/hs	
	http://ccssmath.org/?page_id=2221	
Resources:	Alg 2 text section 7.5, 7.6	

approximate values of logarithms

1. Evaluate log 16 given that log 4 \approx 0.602.

procedural

Give examples.

Integrated Math 3 Course Standard and Resource Guide

Mathematical Modeling

<u>UNIT 7:</u>

Overview

Arithmetic and Geometric Sequences

A.CED.1

Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA

Concept Developm	nent	Skill D)evelopment
Concept:	Sequences (arithmetic and geometric)	Skill:	
Definition:	A set of quantities ordered in the same manner as the positive integers, in which there is always the same relation between each quantity and the one succeeding it. This relation is either a common ratio or a common difference.	What do I teach?:	
Critical Attributes:	Common Difference (arithmetic sequences) Common Ratio (geometric sequences)		
Shared Attributes:	A sequence can be finite, such as: $\{1, 3, 5, 7, 9\}$ or it can be infinite, such as: $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}\}$.	How do I teach?:	
	 Given the sequence 7, 9, 11, 13, write the equation for a sub n. Given the sequence 3, 6, 12, 24, write the 		
Examples: Non-Examples:	equation for a sub n. {1, 3, 8, 5, 6, 4, 11, 8, 57}		
Resources:	http://ccssmath.org/?page_id=2117 Alg 2 text sections 12.1 - 12.4 http://www.illustrativemathematics.org/standards/hs	CFU Questions:	

F.IF.6

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Concept Development			Skill Development							
Concept:	Average Rate of Change		Skill:	Calculate	rate o	f chang	е			
	Average Rate of Change is a process that calculates the amount of change		What do I teach?:	Procedura meaning f					ve (inte	rpreting
Definition:	in one item divided by the corresponding amount of change in another.		How do I teach?:	Choose an (slope of li chosen int	ine co	nnectin				
Critical Attributes:	interval, variables, graph or table of values	1.) The following table shows the averag hours in Alaska for each month. Months		-						
Shared Attributes:	slope of lines, unit values			represented by the number of months after January		nuary.				
Non-Critical Attributes:	actual values,			Month	0	2	4	6	8	10
	1.) (see "Garbage Trucks" Performance task):			Daylight Hours	5.7	10.4	16.9	19.2	14.3	8.5
Examples:	2.) Mathemafish Population http://www.illustrativemathematics.org /illustrations/686		CFU Questions:	Calculate t September		erage ra	ite of cł	nange fr	om Ma	rch to
Resources:	http://ccssmath.org/?page_id=2163									

F.BF.2 (review from math 1)

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Concept Development		Skill Development	
Development	Arithmetic and Geometric Sequences	Skill:	Write arithmetic & geometric sequences with an explicit form
Concept:	Recursive Equation	Procedural or Declarative	Procedural
	Arithmetic Sequence:t _n = t _{n-1} + d (replace t with a) where d is the common difference;	Knowledge	
Definition:	Geometric Sequence: a _n = r * a _{n-1} where r is the common ratio	Procedure, process, or	Ddtermine how to write as an equation and also as a recursive
	Arithmetic: need common difference d,	steps to execute the skill	(repetitive routine). $F(x) = x$ F(x) = F(x-1) + 1 respective
Critical Attributes:	previous term; Geometric: need common ratio r, previous term		In year 1, you are a year old. In year 2, you are 2 years old, and
Shared Attributes:	sequence of numbers	CFU Questions:	on. At any point, you can ask th question: "After <i>x</i> years, how ol
Examples:	Arithmetic 2,4,6,8, ; 3,9,15,21,Geometric 4,20,100,500, ; 40,20,10,5,		will I be?"
Non-Examples:	Arithmetic 2,4,6,8 ; 3,5,9,15,23,Geometric 4,20,100,500 ; 4,10,18,28,40		
	Write a rule for the arithmetic sequence 17,14,11,8,then find a^20 (20 is subscript). Write a rule for the geometric sequence 4,20,100,500,then find 2^7 (7 is subscript).		

A.SSE.4

Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.

Concept		Skill Development	
Development Concept:	Finite geometric series	Skill:	Derive and Calculate sum of geometric series.
	The expression formed by adding the terms	What do I teach?:	Procedural
	of a geometric sequence is a called a geometric series. The sum of the first <i>n</i> terms in a geometric series is denoted by <i>S</i> _n . <i>a</i> ₁ represents	How do I teach?:	Show derivation through examples. After several examples, students are then brought to conclude the general formula and can then apply it in situations.
Definition:	the first term and r represents the common ratio.		1. In 1990, the total box office revenue at U.S. movie theaters was about \$5.02
Critical Attributes:	Common ratio ≠ 1		billion. From 1990 through 2003, the total box office revenue increased by
Examples:	http://www.illustrativemathematics.org/illust rations/1283		about 5.9% per year. a.) Write a rule for the total box office revenue α_n (in billions of dollars) in
Non-Examples:	2, 4, 6, 8, 10, 12, 14		terms of the year. Let $n = 1$ represent 1990.
Resources:	http://ccssmath.org/?page_id=2101 Algebra 2 text section 12.3 and 12.4		b.) What was the total box office revenue at U.S. movie theaters for the entire period 1990-2003?
			2. Write 0.333 as an infinite geometric series. Represent this series using summation notation. Find the
		CFU Questions:	sum.

Mathematical Modeling

<u>UNIT 8:</u> Modeling with Systems of Equations/Inequalities

Overview Additional modeling with systems of equations/inequalities if needed.

Integrated Math 3 Course Standard and Resource Guide

Mathematical Modeling UNIT 9

Overview Apply geometric concepts in modeling situations.

G.MG.1

Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).

Concept	
Development Concept:	geometric shapes
	Shapes include: squares, cubes,
Definition:	cylinders, circles, spheres, triangles, cones,
Critical Attributes:	properties of shapes
Examples cfu:	What shape would best model a tree trunk? Use it to find volume of wood in a tree trunk with diameter=3 feet and length=30 feet.
	http://ccssmath.org/?page_id=1306

G.MG.2

Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).

Concept Development		Skill Development	
		Skill:	Find the density of geometric figures
Concept:	density	What do I teach?:	Procedural
	density = mass/volume. Other ratios such as population density	How do I teach?:	Show examples of real life applications
Definition:	(people/square mile) fall into this concept.		The current population of New York is 3.8 million. The area of New york City is 300
Critical Attributes:	mass, volume, units	CFU Questions:	square miles. Calculate the population density of New York.
Shared Attributes:	area		
Non-Critical Attributes:	the particular units of mass and volume could need to be converted depending on situation		
Examples:	A hot air balloon holds 74,000 cubic meters of helium, a very noble gas with the density of 0.1785 kilograms per cubic meter. How many kilograms of helium does the balloon contain?		
Non-Examples:	Find the volume of a cylinder whose radius is 4 cm and height is 10 cm.		
Resources:	http://ccssmath.org/?page_id=1306		

G.MG.3

Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Concept Development		Skill Development	
Concept:	Geometric Modeling with Constraints		calculating measures of real life geometric
Definition:	Constraints include limits to cost, size, shape. Minimum means least. Maximum means most. Ratios are used to change scales.	Skill: What do I teach?: How do I teach?:	figures. procedural Show students real life applications and solve.
Critical Attributes: Shared Attributes:	area, perimeter, volume length and width and height		Maximize the number of parking spaces in a given complex-shaped parking lot. Work with given constraints such as standard parking stall size,
Non-Critical Attributes:	radius		area needed between sections of stalls, etc Justify your work. Calculate the minimum fencing cost to make a
Examples:	A triangle has a perimeter of 100 centimeters and one side is 35 centimeters. The other two sides have a ratio of 5:8. What is the length of the longest side of the triangle?		60,000 square foot grazing plot for a cow, given that it will be a rectangular plot made from a fence that costs \$100 for each 8 foot section. Find the new surface area when the volume of a spherical balloon is doubled from 100 to 200 cubic
Non-Examples:	Find the area of a rectangle that is 5 ft x 4 ft.	CFU Questions:	meters.
Resources:	http://ccssmath.org/?page_id=1306		

G.GMD.4

Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

oncept evelopment		Skill Development	
oncept:	Cross Sections		identify cross sections of 2D and 3D
Definition:	A cross section is the face created by slicing an object.	Skill: What do I teach?:	figures declarative
Critical Attributes:	Cross Sections		Use visuals with videos and
Shared Attributes:	faces	How do I teach?:	demonstrations.
Non-Critical Attributes:	slices could be in any of several directions, ie: parallel to x or y axis.		Demonstrate how you could slice an octahedron to create a triangle, a square, a rhombus that is not a squar
Examples:	Given a cylinder with radius 7 in and height 10 in, find the area of a cross section that is parallel to its base.	CFU Questions:	Find the volume of a cone created by rotating an equilateral triangle with perimeter = 36 meters.octahedron to create a triangle, a square, a rhombut that is not a square.
Non-Examples:	Find the volume of sphere whose radius is 6 cm.		
Resources:	http://ccssmath.org/?page_id=1306		

Integrated Math 3 Course Standard and Resource Guide Trigonometry

<u>UNIT 10</u>

Overview

Right Triangle Trigonometry

G.SRT.6

Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Concept Development

Concept: trigonometric ratios

Definition: A ratio of the length of two sides of a right triangle.

Critical Attributes: opposite, adjacent, hypotenuse

Shared Attributes: triangle, ratio

Non-Critical Attributes:

Examples: sine, cosine, tangent

Non-Examples: non-right triangle

Possible CFU Questions: What is the sine ratio (cosine or tangent) of an acute angle of a right triangle?

Skill Development

Skill: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

Procedural or Declarative: declarative

Process , Procedure, Steps:

Details: Need to know similarity, vocabulary for right triangles

Possible CFU' Questions: Why does the trig ratio stay constant the same despite the size of the triangle?

G.SRT.7

Explain and use the relationship between the sine and cosine of complementary angles.

G.SRT.8

Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Concept Development

Concept: sine and cosine

Definition: in a right triangle sine is the ratio of the opposite side to the hypotenuse and cosine is the ratio of the adjacent side and the hypotenuse.

Critical Attributes: right triangle, opposite, adjacent, hypotenuse

Shared Attributes: ratio

Non-Critical Attributes:

Examples: sine B =b/c; cosine B = a/c

Non-Examples: sine A =a/c; cosine A = b/c

Possible CFU Questions:) A young boy lets out 30 ft of string on his kite. If the angle of elevation from the boy to his kite is 27°, how high is the kite?

Skill Development

Skill: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Procedural or Declarative: Procedural

Process, Procedure, Steps: Solve for an unknown using trig ratios

Details: angle of depression or elevation

Possible CFU' Questions: A ranger is on top of a 50-foot tower and spots a fire. If the angle of the depression is 30°, how far is the fire from the base to the fire.

G.SRT.8.1

Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90° and 45°, 45°, 90°). CA

Concept Development

Concept: special right triangle

Definition: a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. Knowing the ratios of the angles or sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods

Critical Attributes: right triangle, equilateral triangle, square

Shared Attributes: ratio

Non-Critical Attributes:

Skill Development

Skill: Use special right triangle ratios to find side lengths of special right triangles.

Procedural or Declarative: Procedural

Process, Procedure, Steps: Solve for the unknown using ratios (similar triangles).

Possible CFU' Questions: Find the value of z.

G.SRT.11

(+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

Concept Developm	nent	S	kill Development
oncept:	Law of Sines and Cosines	Skill:	
Definition:	Identities that are used to find missing pieces of oblique triangles	Procedural or Declarative:	
ritical Attributes:	pythagorean thm, trigonometric ratios	Process, Details:	
Examples:	Find the lengths of a and b. 12 B^{B} B^{a} B^{a} B^{a} B^{a} B^{a} B^{a} C^{a} A^{b} B^{a} C^{a} B^{a} C^{a} B^{a} B^{a} B^{a} C^{a} B^{a} B	Possible CFU's	
on-examples:	Find the legth of BC A		
Possible CFU:	When do you use the law of sines or the law of cosines?		
Resources:	http://ccssmath.org/?page_id=1306		

Integrated Math 3 Course Standard and Resource Guide

Trigonometry UNIT 11:

Overview Unit Circle

F.TF.1

Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.

Concept Development	
Concept:	radian measure
Definition:	A unit of measure for angles. One radian is the angle made at the center of a circle by an arc whose length is equal to the radius of the circle.
Critical Attributes:	angle and unit circle, circumference
Examples:	Length = r
Non-examples:	
Possible CFU:	 Find the radian measure of 30 degrees on a unit circle. How many radian are in a full circle?
Resources:	http://ccssmath.org/?page_id=1304

Skill Development	
skill	understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
Procedural or Declarative:	Declarative
Process, Details:	Use technology to show and demonstrate that 1 radian is equivalent to 57.3 degrees. Furthermore develop the conversion factor of $\pi/180^{\circ}$
Possible CFU's	Convert 120 degrees into radians.

F.TF.2

Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

oncept		Skill Development		
Development Concept	unit circle	skill	Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real	
Definition	A unit circle is a circle that has a radius of one unit		numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	
critical attributes	coordinate plane, radian measure, trigonometric function	Procedural or declarative	Declarative	
Examples:	θ is the angle Envision the radius as if moves about the circle (-1,0) (0, 1) (0, 1) (1, 0) (1, 0	Process	Go over (x,y) coordinates, pythagorean theorem, triangle trigonometry, quadrants and radian measure.	
		Possible CFU	Why is $\frac{3\pi}{4}$ in the second quadrant and explain why the sine of that angle would be positive and the cosine would be negative. $\frac{2\pi}{4}$	
Possible CFUs	Explain why $\sin \theta = y$ and $\cos \theta = x$.			
Resources:				
			Figure 10.20	

F.TF.3 (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the values of sine, cosines, and tangent for x, $\pi + x$, and $2\pi - x$ in terms of their values for x, where x is any real number.

Concept Development						
Concept	unit circle					
Definition	A unit circle is a circle that has a radius of one unit					
critical attributes	coordinate plane, radian measure, trigonometric function					
Examples:	45-45-90 Triangle (0, 1) (2, 45') (1, 4) (1, 4) (2, 1) (2, 45') (1, 4) (2, 1) (2, 1)					
non-examples						
Possible CFUs	Fill in the chart					
	Degrees	0	30°	45°	60°	90°
	Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
	sin $ heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
	cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undefined
Resources:	http://ccssmath.org/?page_id=1304 http://www.themathpage.com/atrig/unit-circle. htm					

skill	Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the values of sine, cosine, and tangent for x
Procedural or declarative	Procedural
Process	use special right triangles and coordinate planes on a unit circle. At this point derive the sine, cosine and tangent of $\pi/3$, $\pi/4$ and $\pi/6$.
Possible CFU	Fill in the unit circle.

Integrated Math 3 Course Standard and Resource Guide

Trigonometry	Trigonometry <u>UNIT 12:</u>		
Overview	Graph and model sinusoids		
F.TF.2.1 Graph all 6 basic trigonometric functions. CA			

Concept Development	
Concept	trigonometric function
Definition	Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle.
critical attributes	coordinate plane, radian measure, trigonometric function
Examples:	y y y = sin x -4π domain: $-\infty < x < \infty$ range: $-1 \le y \le 1$ y y = cos x -3π $-\pi$ $-\pi$ $1 \le y \le 1$ y $y = \cos x$ -3π $-\pi$ $1 \le y \le 1$ π 2π 3π 4π π 4π x 3π 4π x domain: $-\infty < x < \infty$ range: $-1 \le y \le 1$
Possible CFUs	On the axes from 0 to 2π , graph: $y = 2\sin(3x)$
	State the amplitude, frequency and period of this graph.
Resources:	http://www.regentsprep.org/Regents/math/algtrig/ATT7/gr aphpractice.htm

Skill Development	
skill	graphing trigonometric functions
Procedural or declarative	Procedural
Process	using technology students can see a pattern of what happens when the amplitude, frequency, or vertical shift is changed on the equation.
Possible CFU	Given $g(x) = 2 \sin(2x)$, do the following: a. state the amplitude and EXACT period b. graph the function on the interval $(-2\pi, 2\pi)$ c. find the EXACT coordinates of the maximum using the graph d. find the EXACT coordinates of the minimum using the graph e. find the EXACT coordinates of the x-intercepts using the graph

F.TF.5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

Concept Development		CFU	A fe abo	ove
Concept	periodic function		ma	ke
Definition	a function returning to the same value at regular intervals.		you	
Critical attributes	amplitude, frequency, and midline	Resources:	http	
Examples:	The number of hours of daylight measured in one year in Ellenville can be modeled by a sinusoidal function. During		<u>php</u> <u>http</u>	
	2006, (not a leap year), the longest day occurred on June 21 with 15.7 hours of daylight. The shortest day of the year	Skill Develop	nent	
	occurred on December 21 with 8.3 hours of daylight. Write a sinusoidal equation to model the hours of daylight in	skill		F
	Ellenville.	Procedural/dec	arative	F
	20 18 16 June 21	Process details		F
	14 12 14 12 14 12 12 12 12 12 12 12 12 12 12	Possible CFU's		1 r g
non-example	The temperature in an office is controlled by an electronic thermostat. The temperatures vary according to the sinusoidal function:			
	$y = 19 + 6\sin\left(\frac{\pi}{12}(x-11)\right)$			2
	where y is the temperature (°C) and x is the time in hours past midnight.			
	a.) What is the temperature in the office at 9 A.M. when employees come to work?			
	b.) What are the maximum and minimum temperatures in the office?			-

abov oʻclo mak your		rris wheel is 50 feet in diameter, with the center 60 feet ve the ground. You enter from a platform at the 3 ock position. It takes 80 seconds for the ferris wheel to the one revolution clockwise. Find the model that gives r height above the ground at time t (t=0 when you ered).	
rces:	php	://www.regentsprep.org/Regents/math/algtrig/ATT7/gra ractice3.htm ://ccssmath.org/?page_id=1304	
)evelopmen	t		
		Finding equations of sinusoids	
lural/declarat	tive	Procedural	
s details		Review the effects of amplitude, frequency, and midline on graphs with students using technology.	
le CFU's		1. Consider this graph of a sinusoidal function [in radian measure]. Determine a function f(x) = A sin (B(x – C)) + D whose graph is the same as the one given	
		 4.20 ¹/₂ 4.20 ¹/₂ 5.5 6.20 ¹/₂ 7.20 ¹/₂ 7.20 ¹/₂ 8.20 ¹/₂ 9.5 8.20 ¹/₂ 9.5 <li< th=""></li<>	
		 Write an equation for the graph below in terms of sine. y₁ 	
		2 1 -1 -2 -3 -5	

Integrated Math 3 Course Standard and Resource Guide

Statistics

<u>UNIT 13:</u>

Overview	Understand why two events are independent and determine independence. Understand conditional probability and find conditional probabilities. (math 2 review)
Standards	

- - - -

S-CP.1.

Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").

Concept Development	Skill Development	
Concept: events as subsets of a sample space	Skill: Describe events as subsets of a sample space (the set of	
Definition: Sample space is a collection of all possible outcomes. Event is a collection of outcomes from a sample space	outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	
Critical Attributes: events, unions, intersection, complements	Procedural or Declarative: Declarative	
Shared Attributes:	Process, Procedure, Steps:	
Non-Critical Attributes:	Details: Create and use Venn diagrams to illustrate relationships between sample spaces and events	
Examples: Rolling a die S= { 1,2,3, 4, 5,6} an event can be, odd numbers= (1,3,5)	Possible CFU' Questions: You have a set of 10 cards numbered to 10. Choose a card at random. Event A is choosing a number less	
Non-Examples:	than 7. Event B is choosing an odd number. Find the following events: find the intersection of A and B, find the union of A or B, find the complement of A, find the complement of B.	
Possible CFU Questions: Describe the sample space when tossing two coins? Using the sample space find the outcomes for the event of getting two heads.		

S-CP.2

Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Concept Development	Skill Development	
Concept: Independent events	Skill: Understand that two events <i>A</i> and <i>B</i> are independent if the probability of <i>A</i> and <i>B</i> occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	
Definition: Two events such that the occurrence of one event has no effect		
on the occurrence of the other event.	Procedural or Declarative: Declarative and Procedural	
Critical Attributes: no effect	Process, Procedure, Steps: Use venn diagrams or two- way tables to show	
Sha red Attributes: events, occurrence	P(A and B) = P(A) P(B)	
Non-Critical Attributes:	Details: Students need to explain why the two events are independent	
Examples: Rolling a die twice.	 Possible CFU' Questions: When rolling two dice: 1) What is the probability of rolling a sum that is greater than 7? 2) What is the probability of rolling a sum that is odd? 3) What is the probability of rolling a sum that is greater than 7 and is odd? 4) Are the events rolling a sum greater than 7 and rolling a sum that is odd independent? Justify your answer 	
Non-Examples: Drawing a card and drawing another card without replacement		
Possible CFU Questions: Explain why rolling a die twice is an independent event.		

S-CP.3.

Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B

Concept Development		
Concept: conditional probability	Skill Development	
Definition: The probability that event B will occur given that event A has occurred.	Skill: Understand the conditional probability of A given B as $P(A \text{ and } B)/P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B	
Critical Attributes: Probability		
Shared Attributes: event		
Non-Critical Attributes:	Procedural or Declarative: Procedural and Declarative	
Examples: Probability of drawing a club given the first was a club.	Process, Procedure, Steps: Calculate conditional probabilities using P(A / B) = P(A and B) P(B)	
Non-Examples: Probability of drawing an ace.		
Possible CFU Questions: Explain why or why not an event is conditional		
	Details: Understand that events A and B are independent if and only if they satisfy P(A) = P(A / B)or satisfy P(B) = P(B / A)	
	Possible CFU' Questions: Using the given information in a venn diagram or two way table calculate a conditional probability and determine if the two events are independent.	

S-CP.4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.

Concept Development

Concept: two-way frequency table

Definition: a table in which frequencies correspond to two variables

Critical Attributes: two-way

Shared Attributes: table, data

Non-Critical Attributes:

1	COOKIE: A	COOKIE: B	
AGE: ADULT	50	0	50
AGE: CHILD	0	50	50
	50	50	100

Examples:

	Class (Marks)	Frequency
	11 - 15	2
	16 - 20	3
	21 - 25	3
	26 - 30	5
	31 - 35	6
	36 - 40	6
	41 - 45	3
	46 - 50	2
mples:	Total	30

Possible CFU Questions: Explain why or why not this ______ is a two-way frequency table.

Skill Development

Skill: Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.

Procedural or Declarative: Procedural

Process, Procedure, Steps: construct a two-way table by inputting data on two variables making sure the columns and rows add to the same grand total.

Details:

Possible CFU' Questions: Construct a two-way frequency table. On one axis, compare grade level and on the other axis, compare the favorite fast-food hamburger place (McDonalds, Burger King, Jack in the Box, In-and-out, Carls Jr.) Find the probability that it is a sophomore who likes McDonalds? What is the probability that a students likes Burger King over anything else?

S-CP.5.

Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

Concept Development	Skill Development	
Concept: conditional probability	Skill: Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.	
Definition: The probability that event B will occur given that event A has occurred.	Procedural or Declarative: Declarative	
Critical Attributes: independence	 Process, Procedure, Steps: The most important key in this lesson is to teach students to think critically about the questions they want answers to. From this, students should be able to link their questions to the types of data they will gather. Finally, they should be able to assemble the data and infer relationships from the data using their knowledge about probabilities. Details: students use the establish formulas in standard S.C.P .3 Possible CFU' Questions: Compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer. 	
Shared Attributes:		
Non-Critical Attributes:		
Examples: Is owning a smartphone independent from grade level?		
Non-Examples:		
Possible CFU Questions: Explain how do you know if two events are conditional or independent.		

S-CP.6.

Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model.

Concept Development	Skill Development	
Concept: conditional probability	Skill: Find the conditional probability of A given B as the fraction of B's	
Definition : The probability of an event (<i>A</i>), given that another (<i>B</i>) has already occurred.	outcomes that also belong to A, and interpret the answer in terms of the model.	
Critical Attributes: already occurred	Procedural or Declarative: Procedural	
Shared Attributes: probability, event	Process, Procedure, Steps: use venn diagrams, two-way table or tree diagram to find conditional probabilities	
Non-Critical Attributes:	Details:	
Examples: Find the probability you passed science given you passed math.	Possible CFU' Questions: Determine the probability of getting the flu, and compare that to the probability of getting the flu given that an individual takes high doses of vitamin C	
Non-Examples:		
Possible CFU Questions: Construct a tree diagram to find the conditional probability of getting heads on the second toss given the first toss was heads		

Apply the Addition Rule, P(A or B) = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model.

Concept Development	Skill Development
Concept: Addition Rule	Skill: Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$, and interpret the answer in terms of the model.
Definition: A statistical property that states the probability of one and/or two events occurring at the same time is equal to	Procedural or Declarative: Procedural
the probability of the first event occurring, plus the probability of the second event occurring, minus the probability that both events occur at the same time.	Process, Procedure, Steps: students use addition Rule to find the P(A or B)
Critical Attributes: union, intersections,	Details:
Shared Attributes: event, probability	Possible CFU' Questions: Find the probability of drawing an ace or
Non-Critical Attributes:	spade.
Examples: Probability of drawing an ace or a spade.	
Non-Examples: Probability of drawing an ace and a spade.	
Possible CFU Questions: Explain how to use the addition rule when two events are given.	

Resources:

http://ccssmath.org/ http://www.geometrycommoncore.com/index.html https://sites.google.com/site/misterbledsoe/cc2-videos http://www.geogebratube.org/

Integrated Math 3 Course Standard and Resource Guide

Statistics

<u>UNIT 14:</u>

Overview

Understand and evaluate random processes underlying statistical experiments

S.IC.1

Understand statistics as a process for making inferences about population parameters based on a random sample from that population.

Concept Developm	ient		Skill Development	
Concept:	Inference		Skill:	Compare and contrast methods of sampling procedures.
Definition:	a conclusion reached on the basis of evidence and reasoning		What do I teach?:	Declarative
Critical Attributes:	random sampling, population			Teach by describing different sampling methods and having students make their ow
	A pollster wants to find out whether or not American citizens would support a candidate		How do I teach?:	samples.
	running for national office who wants to lower th legal drinking age from 21 to 18. They plan on doing this by sending 10,000 text messages across the entire United States to randomly selected, active, U.S. based phones with text messaging capabilities. Assume every text that sent receives a reply. Why is this random sample, despite being truly randomly chosen,	s	CFU Questions:	Why is picking out different candies from a bag without looking not as effective a rando sample than if you were to assign numbers each piece of candy and let someone else pick those randomly instead?
	unlikely to be a good representative sample of t American population's opinion in an election?	e		
CFU's	A fair six-sided die is randomly tossed to get a sample of 1, 1, 1, 1, 1, and 1. Is this a random sample and why?			
	http://www.shmoop.com/common-core-standard ccss-hs-s-ic-1.html#drills https://www.illustrativemathematics.org/illustrat			
Resources:	<u>s/122</u>			

S.IC.2

Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin lands heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?

		-	
Concept		How do I teach?:	Use technology to help with setting up simulations.
Development Concept:	Plausibility of a model.		Alma has developed a new kind of antibiotic that she expects to kill 90% of harmful bacteria when applied. She applied her antibiotic to a Petri dish
Definition:	Plausible means that the model is likely to have produced certain data.		full of bacteria, waited for it to take effect, and too a random sample of 200 bacteria. She found that
Critical Attributes:	simulation, sample, data-generated		87% of them were dead. In light of the results, Alma had to test the hypothesis that the true
Shared Attributes:	random		percentage of dead bacteria is 90%. She performed 100 computer generated simulations
Examples:	A six-sided die is biased. To find the probability that it rolls a 6, a simulation is done by a researcher. The die is rolled 120 times and the outcome is 6 only 15 times. What does this simulation suggest?		random samples of 200 bacteria, supposing the true percentage of dead bacteria is 90%, to find how likely it is that a sample would have 87% de bacteria. The results of the simulations are plotted below. How do the results of the simulations affer
Resources:	http://ccssmath.org/?page_id=1311 http://www.sophia.org/tutorials/simulations?pathway =ccss-math-standard-9-12sic2 https://www.khanacademy.org/search?page_search _query=s.ic.2		 the likelihood of the hypothesis that Alma's antibiotic kills 90% of bacteria? The results are reasonably consistent with the hypothesis. The results make it very unlikely that the hypothesis is correct.
Skill Development			
Skill:	Compare model results with data.		
Declarative/Procedural?:	Declarative		
	·		
			Image: 1 Image: 1
			Measured % of dead bacteria
		CFU Questions:	· · · · · · · · · · · · · · · · · · ·

S.IC.3

Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

Concept		Skill Development	
Development Concept:	sampling		Recognize the purposes of and differences amo sample surveys, experiments, and observationa
Definition:	ways of gathering data	Skill:	studies; explain how randomization relates to each.
Critical Attributes:	sample surveys,experiments, and observational studies	Declarative?:	Declarative
Shared Attributes:	random samples	How do I teach?:	Provide students with different types of samplin methods and have discussions with them in sma groups and whole class.
Examples: Resources:	A scientist selects 500 smokers to test how long they can hold their breath. Not surprisingly, the smokers can't hold their breath for long. The average result was a measly 23 seconds. What kind of study was this? <u>http://ccssmath.org/?page_id=2361</u>		A pharmaceutical company is trying to figure out whether a drug called SmartiePants can make you smarter. (It also tastes like candy. The more you eat the smarter you can get.) They prepare a double-bline study as follows:
			Step 1: A randomly selected pool of individuals will the brought into a clinic and evaluated for any existing health conditions that would disqualify them from the experiment. Step 2: After passing the health screening the individuals will be split up into two groups: test and controlled. Step 3: The control group will receive a placebo, but
			neither the clinician administering it nor the participa know this. Step 4: The treatment group will receive SmartiePan but neither the clinician administering it nor the participants know this. Where is the mistake in this double blind
		CFU Questions:	study?Explain what type of sampling method is this

S.IC.4

Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

Concept Development				Skill Deve	elopment
Concept:	population	mea	n or proportion	Skill:	
	The statis	tic tha on of	at estimates the parameter p, a population that has some property ed to give information about the	Declarative/proc How do I teach?:	
Definition: Critical Attributes:	n: population parameter μ; Attributes: Categorical and quantitative data Attributes: sampling A local candy store has found that kids prefer certain				
Shared Attributes:				CFU Questions:	
			regardless of their taste. For kids ages e following data was collected:		
	Red	89			
	Yellow	27			
Examples:			imated population proportion of the candy color from this sample?		
Resources:	http://ccss	math	.org/?page_id=2363		

S.IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

Concept Development				Researchers were interested in the effect of pre-existing inappropriate highlighting of text on reading comprehension. They randomly assigned a
Concept:	experim	ents		group of 300 students to a treatment group and to a control group. Both groups were asked to answer a
Definition:	actually	a person, animal, plant or thing which is studied by a researcher; the basic objects hich the study or experiment is carried out		38-point reading comprehension test. The text given to the treatment group had inappropriate passages highlighted, while the text of the control group wasn't highlighted at all. They found
Critical Attributes:	treatme	nts, populations		that the mean score of the treatment group is 8 points less than the mean score of the control group.
Shared Attributes:	random	ness		Using a simulator, they re-randomized the results into two new groups and measured the difference between
Examples:	after dri someon fairly dit action?	compares how much faster someone runs nking a shot of espresso compared to e who drinks only water. If the data seems fferent, what would be the best course of www.khanacademy.org/commoncore/grade-H		 the means of the new groups. They repeated this simulation 150 times, and plotted the resulting differences, as given below. According to the simulations, is the result of the experiment significant? Yes. According to the simulations, the result of the experiment is significant. No. According to the simulations, the result of the experiment is insignificant.
Resources:	<u>SS-S-IC</u>			the experiment is insignificant.
Skill Development	t	conduct an experiment through simulation to compare parameters		
Procedural/Declarative:		Procedural and Declarative	CFU Questions:	-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 Difference of mean score
How do I teach?:		using technology to gather data from a simulation		1

Concept		Skill Deve	lopment
Development Concept:	data	Skill:	
Definition:	a collection of facts or information from which conclusions may be drawn.	Procedural/De	clarative
Critical Attributes:	population proportion or population mean	How do I teach	1?:
Shared Attributes:	sampling methods		
Examples:	A study samples 100 Coca-Cola drinkers and finds that 99 of them really dislike the taste of the new cola drink. What inference can be drawn from this?		
Resources:	http://ccssmath.org/?page_id=2367 https://www.khanacademy.org/search?page_sear ch_query=s.ic.4		
		CFU Questions:	

If time permits and you want to challenge students, these last two standards may be introduced.

S.MD.6

(+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).

S.MD.7

(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).

Integrated Math 3 Course Standard and Resource Guide Statistics UNIT 15:

S.ID.1 (math 1) Represent data with plots on the real number line (dot plots, histograms, and box plots).

Concept Development			Given the following box plot, what are the me lower, and upper quartiles?
Concept:	data		
Definition:	facts or information used usually to calculate, analyze, or plan something	CFU	11 12 13 14 15 16 17 18 19 20
Critical Attributes:	dot plots, histogram, and box plots		http://appa.meth.pm/?appa.id=0222
Shared Attributes:	graph	Resources:	http://ccssmath.org/?page_id=2333 http://www.mathsisfun.com/data/histograms.h
Non-Critical Attributes:	information gathered	Skill Devel	opment
	25 20 15 10 5 0 40 60 80 100 120 140 Lower Lower Median Upper Upper Extreme Quartile Extreme	Skill: Procedural o Procedure, p steps to exec	rocess, or Using technology to get data show students
	50 55 60 65 70 75 80 85 90 95 100		Given the following dot plot, what is the median the data?
Examples:	Comedy Action Romance Drama SciFi	CFU Question	IS: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S.ID.2 (math 1) Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

Concept Development		Skill Development	
Concept:	data distribution	Skill:	compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
Definition: Critical Attributes:	collection and interpretation of quantitative data two data sets, center and spread	Procedural or Declarative Knowledge	Procedural
Shared Attributes:	median, mean, interquartile range, standard deviation Below are the scores two different sections of a vocabulary quiz. Given that the distribution of scores follows a normal	Procedure, process, or	Provide students with data set have them plot on the appropriate graph and have compare the center and spread.
Examples:	distribution, which section had a greater spread in the data? Section 1: $16 10 19 18 17 18 14 16 16 15$ 13 12 15 12 18 20 10 15 11 18 11 11 16 14 15 11 10 18 17 19 9 10 9 14 10 19 9 9 15 17 Section 2: $12 10 12 11 14$		Jane collected some red and yellow roses. She measured the lengths of their stems, and drew the following box plots. Write down the median lengths of both the yellow and red roses to the nearest centimeter.
Non-Examples:			Vellow Roses
CFU	Billy-Joe Bob and Bobby-Joe Bill are having a contest to see whose chickens provide more eggs. Over the course of 10 days, the farmers each count and record the number of eggs they collect. Compare the two data sets using shape, center and spread. Billy-Joe Bob: 28, 21, 8, 15, 6, 18, 16, 30, 25, 17 Bobby-Joe Bill: 27, 28, 15, 28, 28, 23, 20, 8, 14, 8	CFU Questions:	Length (cm) Which color rose would you buy for a 40 cm tall vase?
Resources:	http://ccssmath.org/?page_id=2335		

S.ID.3 (math 1) Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

Concept Development	
Concept:	Data
Definition:	facts or information used usually to calculate, analyze, or plan something
Critical Attributes:	shape, center, spread, outliers
Shared Attributes:	graphs
Non-Critical Attributes:	information gathered
Examples:	Skewed Left Skewed Right Symmetric
	Given the following histogram, how can we describe the shape of the data?
CFU	·
Resources:	http://ccssmath.org/?page_id=2337 http://www.mathsisfun.com/data/histograms.html

Skill Development			
Skill:	Interpret differences in shape, center, and spread in the context of the data sets		
Procedural or Declarative	Declarative		
Procedure, process, or steps to execute the skill	Provide students with visuals of different types of graphs and show students how to describe data distribution in terms of shape.		
	1. The mean of a data set is 12 and the median is 10. What shape is the data?		
CFU Questions:	2. Given the data points 18, 14, 12, 14, 11, 11, 19, 20, 16, and 11, which values would be considered outliers?		

S.ID.4

Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

Concept Development		Skill Development	
Concept:	Normal Distribution, z-score. A normal distribution is modeled by a bell-shaped	Skill:	Students should be able to complete normal distribution calculations. Use properties of norma distributions to draw conclusions.
Definition:	curve called a normal curve that is symmetric about the mean. Z-scores correspond to the number of standard deviations that the x-value lies above or below the mean xbar.	What do I teach?: How do I teach?:	Know the properties of the normal distribution. F z-values. can use technology or table
Critical Attributes:	properties of the normal distribution with the mean and standard deviation		1. What is the relation between the z score and th standard deviation?
Shared Attributes:	Standard Deviation, Mean, z-scores.		
Examples:	The grades on a math midterm at Gardner Bullis are normally distributed with μ =76 and σ =4.5. Daniel scored 64 on the exam. Find the z-score for Daniel's exam grade. Round to two decimal places.		2. You purchased 10 baskets of strawberries at the farmer's market and counted the number of strawberries in each basket. Based on your purch do you think the number of strawberries in a bask normally distributed?
Resources:	Alg 2 Textbook section 11.1 p 744-748 and section 11.3 p757-762 https://www.khanacademy.org/search?page_search_ query=s.id.4 http://ccssmath.org/?page_id=2339	CFU Questions:	20 24 20 22 21 19 17 15 20